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Abstract:

This paper analyzes temperature data obtained from 96 world wide weather stations, as well as reconstruct-
ed data from the last two millennia. Our model is derived from three invariance hypotheses. The first one is
that the temperature process is stationary. The second one is that the distribution of the average tempera-
ture over any specific time period does not depend on the length of the period apart from a scale transfor-
mation. The third one is that the temperature process is Gaussian. These hypotheses imply that the temper-
ature process is a so-called Fractional Gaussian noise process. This type of processes exhibits long range
dependence. In order to test our hypotheses we have applied a graphical test based on the empirical char-
acteristic function and a Chi-square test. The tests indicate that the most of the observed data are consistent
with the Fractional Gaussian noise model as a representation of the temperature process. The tests also im-
ply that the reconstructed data are consistent with Fractional Gaussian noise model.
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1. Introduction

The question of whether or not a change of the temperature level is taking place has beerevividly d
bated during the last decades. It seems by now to be a widely accepted view that thene aagbe
tematic change in the temperature level in recent decades. This question is, however, not as easy to
answer as it may seem at first glance. Some of the recordesl gfeieenperaturesxhibit local trends

and cycles that seem some times to pensiste or less up to several decades. In the absence of a
physical model that is capable of explaining the weather dynamics precisely, an interesting question is
whether the temperature fluctuations are consistent with outcomes of an undsdsimarystocha-

tic mechanism (process), and what the features of such a stochastic process are. The diffsculty of a
sessing whether or not there is a systematic change in the temperature level is related tocseveral fa
tors: First, the lengths of the available ebh®d time series of temperature data are limited. Few of the
recorded temperature series are longer than 250 years. Although 250 years may seem like a rather long
time, it is not so when it comes to examining properties such as long range dependence.

In recent years there have also been attempts to reconstruct temperature data from other
sources. One important data set has been obtained by Moberg et al. (2005a) who have reconstructed
annual temperatures from 1979 back to the first year AD based on itiforrfram tree rings and
lake sediments. Results from ice core drillings in Greenland and the Antarctic ice cap have also been
used to reconstruct temperatures and &fdcentrations from about 800,000 years BC, see Jouzel et
al. (2007)

Statistical timeseries analysis based on actual recorded temperature time series include
Bloomfield (1992), Bloomfield and Nychka (1992), Galbraith and Green (1992), Koenker anét Schor
heide (1994), Harvey and Mills (200Karner (2002),Gil-Alana (2003, 2008a,b), Gdyarcia and
Estrada (2009), Mills2007,2010), Estrada et al. (2010), Kaufmann et al. (2010), Schmith et al.

(2012), and Holt and Terasvirta (2012). Mills (2007) has analyzed the reconstraiztedbthined by
Moberg et al. (2005a).he advantage with theconstructed data sets is that they cover quite long
time periods. However, since they are reconstructions the extent of measurement error might be su
stantial.

With few exceptions, the papers cited above apply univariate statistical tools for analyzing
time series without any a priori restrictions derived from theoretical considerations. When the
discrimination between statistical models is primarily based on gocdhéissonsiderations the

obvious problem of discriminating between specificationstiedd more or less the same fit but

! Data from ice core drillings show that thésea close relationship between the mean world temperature and the glgbhal CO
concentrations. However, since the temperature data are not recorded directly but obtained by a particular reconstruction
procedure they therefore contain measurement erraczen8gthe data are only obtained at irregular time intervals typically
ranging from each 500 to 1000 years apart; see Davison and Turasie (2013).
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produce substantially different eot-sample predictions is highly problematic. This difficulty is
illustrated by recent discussions in the literature (Kaufmann et al., 2010, and Mills, 2010), about
whether the tempature process contains a stochastic or a deterministic trend. This difficulty is not
likely to be resolved by statistical arguments alone. If a precise physical theory were available one
might imagine applying a combination of a priori physical assumpéindsstatistical modelling
techniques, as have been done by for example Aldrin et al. (2012) and Schmith et al. (2012). Such a
strategy faces, however, serious difficulties because existing physical theories are simply not
sufficiently precise for the sakd providing reliable quantitative relations for explaining temperature
fluctuations. They are therefore not very helpful for discriminating between competing statistical
formulations.Still, it would clearly be desirable to follow an alternative stratbgy is based on

plausible theoretical hypotheses that are formulated independently of the data at hand, and that implies
substantial restrictions on the data. Furthermore, it would certainly be of great advantage if these
hypotheses could be tested faarametrically without introducing ad hoc auxiliary assumptions about
functional form and distributions of random elements.

In this paper wéave taken a modest version of the alternative strategy, basecerkey
hypotheses which may be viewed as imee pringdles. Our approach 8mple in the sense that no
explanatory variables are introduced and no deeper explanations of the temperature variations are pr
vided. The first hypothesis asserts that the temperature process is stationary. The sEtbedisiy
asserts, loosely speaking, that the distribution of the average temperature (normalized to have zero
mean) over a time period does not depend on the length of the period apart from a scale transfo
mation. This hypothesis is equivalent to a hypsithef selfsimilarity. The third hypothesis asserts
that the temperature process is Gaussian.

The selfsimilar hypothesis asserts that the temperature process (normalized to have zero
mean) does not depend in an essential way on the timig wsi¢ either it is annual or monthly axe
ages (adjusted for seasonal variations). For example, in such a process the distribution of five year
average temperatures is not different from the distribution of eight year average temperatures, apart
from a suitable scaltransformation. In other words, the second hypothesis asserts that the average
temperature up to timefollow the same distributional law as the average temperature up tbttime
for positiveb, apart from a change of scale of the process.

The idea ofelf-similarity emerged from work done by Hu(d4851) who analyzed discharges
of the river Nile in Egypt. It is however, Mandelbrot and hisnaykers that have demonstrated the
power and importance of the sslfnilarity propertysee Mandelbrot (1963965, 1982, Mandelbrot
and van Ness (1968), and Mandelbrot and Wallis (1968, 186®|\f-similar phenomenoaor fractal

featureexhibits a repeating pattern that displays at every scale. In other words, a fractal has invariance



properties as it leavesrtain qualitative properties of the phenomenon unaffected by scale transfo

mations. Examples of phenomena known or anticipated to have fractal features are: mountain ranges,
river networks, snow flakes, fern leaves, fault lines and lightning boltdneteveral scientific fields,

such as physics and measurement theories, invariance assumptions have been found toplay an i

portant role in narrowing down the family of sensible mathematical specifications relevant for the
phenomenon under study. A partiaula f amous exampl e is Einsteinds sp
one key assumption is an invariance assumption that was formulated a priori, i.e., independently of the
data’ In physics, dimensional analysis is a set of procedures used to discovertsmttidsolutions

of complex problems. The principle of dimensional invariance asserts that a numerical relation that
expresses a valid relationship between physical variables has the same mathematical form no matter
what scales are used to measure thaiphlvariables (Krantz et al., 19/almagne and Narens,

1983,and Narens, 2002). Sedov (1959) has used the following argument to justify dimensiomal invar
ance: Since there is no Arighto and fAokgnecti veo
should depend in a fundamental way on the time scale in use. For a further discussion, see Krantz et al.
(1971, pp. 50%506)? In our case the seffimilarity hypothesis caalsobe motivated by a resulbe

tained ly Lamperti (1962). Lamperti demonstatthat under rather weak regularity conditioms-te

poral aggregation will, asymptotically, yield seimilarity of the resulting aggregate process.

At first glance it seems that the Gaussian hypothesis may be motivated by the Central limit
theorem becawgsthe annual (and monthly) temperatures are averages of daily temperatureswh is, ho
ever, not evident that the conditions of the Central limit theorem are fulfilled because the temperatures
may be highly serially correlated in a manner that violatesgbal mixing conditions (Billingsley,

1968).

The invariance hypothestagn out toimply quite strong restrictions on the modehey imply
that the tempetare processs a secalled Fractional Gaussian noise process (FGN), see for example
Samorodnitsky rad Taqqu (1994). The FGN process is a Gaussian process with a particular restrictive
serial correlation structure. In contrast to for example ARMA or State Space formuthgdfiGN
process exhibit long range dependencethadiutocaelation structurenly depends on one param
ter, namely the soalled Hurst indext.* Furthermore, its autocorrelation function is invariant with

respect to change of time unit.

Einstein (1905) formulated the first i nvateofmotianat (principle
constant speed cannot be distinguished by any experiment pe
assumption is that the speed of light is the same whether or not the source of light is moving toveavdg from he

observer. Whereas the first principle is entirely theoretical the second one is based on extensive measurements.

3 What is remarkable is that fundamental equatifrzhysics are dimensional invariant.
“There are 3 parameters in a FGN process, namelMtinst index, the mean and the standard deviation.

4



A crucial problem is how the three fundamental hypotheses described above can be tested
without making additional auxiliary assunigus. In this paper we apply two typestes$ts. The first
one is a particular graphictst based on the empirical characteristic function representatien.
seond one is a Chéquare test.

The empirical analysis isased on datadm 96 weather stations addta reconstructed by
Moberg et al. (2005a, 2006). The obserdath provide convincing support of the hypothesis that
FGN is consistent with the data. It is also striking that the Hurst index, which charactee zzd-
correlation functiondoes not seem to vary very much across the observed time series from tbe respe
tive weather stationg\ccording to the graphicahnd the Chisquare test the reconstructed data are
consistent with the FGN model.

The papeis organized as follows: First, we discuss the key hypotheses in section Dand su
sequently derive imptant implications in section & section 4 we discuss strategies for estimation
and testing and in section 5 we describe the data. Section 6 coatils from the estimation and
testing. Section 7 is devoted to the analysis of the reconstructed date from the last two millennia
(Moberg et al. 2005b).

2. The hypotheses
Let { X(9, t2 0} denote the temperature process, which we vew stochastic process in discrete

(and sometimes continuous) timen this section we provide a precise formulation for our hygoth

ses. Recall that the hypothesesratassumptions since they will be tested.

Hypothesis 1

The temperature proce$3( 9, t2 0} is stationarywith finite mean

The stationarity hypothesis is a key assumptitois.however a delicate one to test. Forraxa
ple, it is known that there have been temperature cycles lasting several hundred years during the last
2000 years, cf. Moberg et al. (2005a). This does not mean, however, that the correspondiag temper
ture process during the last 2000 years may not be viewed as a stationary process, but it clearly ind
cates that if so, long range dependence features neghilistantiallhe observed data only cover
a period of less than 300 years and the stationarity hypothesis seems to be a reasonable starting point.
Whether or not the cycles of the temperature reconstructions obtained by Moberg et al. (2005a) are
consisent with our hypotheses will be discussed below.

In order to state our next assumption we need some additional notataiacrete time, e-

fine



Y()=& (X() -EX(), Y(©)=0.

r=1
The corresponding continuous time definition is samiThe reason why we introduce the aggregate
process{Y( ), t2 0} is because itis very helpful for formulating the following hypothesis as well as
getting an intuitive understanding of its appeal. However, this process is of no paitieukst to us

apart from its theoretical usefulness.

Hypothesis 2 €ontinuous time versign
The proces$Y( ), t2 0} is selfsimilar, i.e. for any positive constant b, the process
{Y( b}, t20} has the same distributional prepies as the procedg(h Y}, 20}, whereg(b) is a

strictly increasing function in b.

An alternative way of expressing Hypothesis 2 is as follows: The joint distribution of

(Y(bt), Y(bt),..., Y(Qt))is equal to the jait distribution of (g(b) Y(1), o B X ),.... d B X,D) for
any set of time epoch@,,t,,....t, ) and for any integem. One way of describing the selimilar hy-

pothesis in words is that the distribution of the average temperature (normalized teroavean) up
to timebt is, apart from a change of scale, the same as the distribution of the average temperature up
to timet. In other words, the time span over which the average is taken is not essential for the qualit
tive properties of the probabilitaw of the process. Thus, under ssthilarity, a change of input

scale by a factdow i | | |l eave the process invariangb.up t

o

Figure 1 below illustrates the sdlimilar feature. The upper part of the figaisplays the annual ce
orded temperatures for Paris. The lower part displays the temperatures over a short period, suitably
rescaled. We note that although the two graphs are different they nevertheless appear todhave som
what similar patterns.

The selfsimilarity property carin fact be justified from temporal aggregation due to a result

proved byLamperti (1962)We state his result in the next theorem.

Theorem 1

Assume that therexist functionsg, (b) and g,(b), whereg,(b)- = asb- & is positive

and increasing, such that the procgd¢b)/ g( b- g( b t D} converges weakly to a propepst



chastic proces§Z(9), t20} asb- @, where theprocess{Z(1), t2 0} is continuous in probability
Then{Z(1), t2 O} is selfsimilar.

Note that it is essential that the functiogsand g, do notdepend on the time index. Inrge

eral,it may not be possible to find such functions that are independent of the timeTindentivate

A~

Lamperti 6s assumption i n our X(misthetemperatwenasdayd er t h

n, adjusted for seasonal variatioagad let

. [Nt]

w=a XK
where K] denotes the smallest integer that is equal to or largexth&henX(n),n=1, 2, n-é, ar e |
dependent and identically distributed with finite variance then there exists suitable normalizing co
stantsg,(n) and g,(n) such that the proceg¥ (9/ g(n- g{ i t B} converges weakly to a
Brownian motion as increases without boundBut suppose instead thae dro the iid assumption

and only requirehat{Y,(9/ g(n- o i t B} converges weakly towards a proper stochaste pr
cessthat is continuous in probabilitywhereg,(n) - @ asn- @, Lettindexii y e a r 0Y,(H)T h e n
will be the aggregate temperature imyeand (Ye(t) - Yot 1))/365t= 1, 2, €é, corresp

the temperature record for yedwhich is the mean temperature within that ye8mcen=365 is
il ar ge o from Theorem That{v,s( )/ g(365)- g,(365),t >0} is appoximately selfsimilar.

If Xis stationary and Gaussian it follows thaf,{ ) - Yyef t 1), t 172,..} is a FGN process.
To realize why the assumptiag)(n)- = asn- =@ isreasonable, note that in the case where
X is sationary, for example, thevarY, (9 will increase without bounds as- =@, and consequén

ly, if a normalizing sequendgg,( 1)} exists it must be the case thgi{(n)- = asn- =.

Hypothesis 3
The procesg X(1, t2 0} is Gaussian.

As mentioned above, it is not evident that the conditions for the central limit theorem will hold
in this case because in the presence of long range dependencedamdstaring conditions

(Billingsley, 1968) may not hold.

® By a proper stochastic process we mean a stochastic process witbgererate finite dimensional distributions.



3. Key implications from the hypotheses

We now consider some important implications from the theoretical hypotheses 1 to 3 introduced
above. Note first that once we have derived the implicationth&Y- process, the properties of the
temperature process follows readily because

(3.2) X®O=m¥(H Yt

where m= EX(1).
Proposition 1
The scale transformation g of a seifilar process that corresponds to a scalesfar-

mation of time must have the formb) = b where H is a constani i (0,1].

A proof of Proposition 1 has been given by Lamperti (1962).

Figure 1. lllustration of statistical self-similarlty. Annual temperatures for Paris




In textbooks on sel§imilar processes the functigrs usually postulated to be of the form
given in Proposition 1 without further justification. As mentioned above, the pararisténe se
calledHurst index named after the British eimger Harold Edwin Hurst (188D978).

Proposition 2
Hypotheses 1, 2 and 3 imply that
(32) CoMY($ X P=052{¥& +F |-t §'}

and
(33) Co«Y()- Xt-d, Xp -¥ s W 05°[( tIs- +2] t-f& { t s+
wheres? =VarY(1) =2VarX(d).

The result of Proposition 2 is well known (see for exampl@&@otnisky and Tagqu, 1994)
who prove the result whah= 1. In Appendix A wagive a proof forgenerald. Due to (3.1) the auto
covariance function for the temperature process follows from (3.3)dwith.

A Gaussian process with autovariance functiogiven by (3.2) is called Fractional Brown
an Motion (FBM). We note that wheth= 0.5 it follows from (3.2) thaCou Y( ), M $ =s min( s},

which is the autaovariance function of thBrownian Motion process. @/see that the auto
covariance function is dermined bys and the Hurst indel. As also mentioned above, the stazha
tic procesgY() - Yt 1), t B is called a Fractional Gaussian Noise process (FGN). Thusyour h
potheses imply that the temperature prodedd), t21} is a FGN process. It follows from (3.3) that
when H =1/2 the autecovariance of th&€GN is zero. One can proysee Samorodnitsky and Taqqu,
1994, Proposition 7.2.10) that

(3.4) Co X(9, X)) ~s?H2H 1|t-sf"2 as [t-s|- =

Both the FBM and the FGN have the following invariance property stated in the next proposition.

Proposition 3
The FBM and FGN have the property that their actorelation functions are invariant under

change of time unit.

The proof of Proposition 3 is given in Appendix A.
Lampertd s r e s uthat selfsimilarl pio@ssesnd in particulaFBM and FGN have

domains of attractiosimilarly to the masstable and stable processes. Consequently, a slight



perturbation of the data will not alter the the distributional outcome in an essential way. Thus, despite
the factthatsel§ i mi | arity is an fAidealizedod property of
the existence of a domain of attraction hascthresequence that even if data have slight measurement
errors the analysis may still produce meaningful and reasonable estimates.

Consider next weighted combinations of sethilar processes. L&t =V, ), whereV,
are independent sedfmilar processes with Hurst index;, j =1,2, and ,] =1,2, are weights. Let
J ({4, Jty,t,) be the characteristic function @¥; (t),V, (1)) and/ ( {, .it;,t,) the claracteristic
function of (V(t),V(t,)). If H;, =H, then obviouslyv will be selfsimilar. Assume next, with no loss
of generality, thatH, > H,. Then it follows that the characteristic function@f(bt)b ", V(bt) b*™")
is equal to

J (™ {,b* fbt,bt)= Eexp(irb ": M(bt) +irb™ V({bt))

Eexplrb ™/, bL) #p ™ L/,(0t,))
=Eexp(n/ Vi, €,) & 1€ )E expr b 2 Y () il M y/L )
=ja(r 4y Aty AT BT ).
Whenb- o the last expression tends towayds$r, 4,r,; At L0.0f &)= 4 § /5 t /) Thus
we have proved tha/(bt)b ™, V(bt) b*") is approximately distributed a¥(t,),V(t,)) whenb is

large. Above we have only considered the bivariate characteristic function relation. The argument in

the corresponding multivariate case is similar. Thushave proved the next proposition

Proposition 4

Suppose/ =rV, )\, wherer, andr, are constants an¥; andV, are independent self

similar processes with HurshdexesH, and H,, respectively, withH,; 2 H,. Then the process

{V(b) b"™, t>0} converges weakly toward4 asb- =.

4. Estimation and testing

4.1. Method based on the characteristic function
We shall now derive somimportant implications that will enable us to test the Hypotheses 1 to 3.

Assume that the hypotheses hold aafing
(4.1) j(t-s ) =Eexp(i () Y(9 i+ @/ 9|t 9)
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for real/ wherei =+/ 4. The formula (4.1) is the characteristic function of the increments of
{M)- Y t3),t B weighted byl/flt- s|. Note first that ifZ is a normally distributed randova-
iable with mearb and standard deviatios it is well known that for any real or complexve have
4.2) Eexp(cZ)=expb ¢ /2)
Under Hypothesis 1 to 3 it follows immediately by using (4.2) that
(4.3) j@-s ) =Eexp( Y(It s)A[It s| i+Htm)k |t s

=Eexp(/ It sT°°YQ #/ 7 YAt s}

=exp(0.32 st P i+ (msyL s|
From (4.3) it follows that
(4.4) j ¢-s Nl =exp( 0551 s 2/
Eq. (4.4) is equivalent to
(4.5) log(- logl/ ¢ s;/)l) €H Dlogf s} 2log| /| logt.8 s
We notice that the right hand side of (4.5) is linealog |t - s|andlog|/ |. Thus, the relation in
(4.5) enables us to carry out estimation and-parametric graphical testing of the hypotheses
provided one is able to obtain a Rparametric estimate of the charactecigtinction/ (t- s; ). This

is indeed possible as we shall now demonstrate.

Define the corresponding empirical counterpart of the characteristic function in (4.5) by

T|t-s|
(4.6) JRt-s ) ETTE Ii - Ia expi ¢ (It s| ky YER)A/It sy

Clearly, under Hypothesis 1 it foll@ithat

1 T- |t | . '
EHt- s ) ETa. a Eexp(i ¢v(t s| kW YERATt o)- (t=s
-S k=1
which means that the empirical characteristic function defined in (4.6) is an unbiased estimator of the

corresponding theoretical characteristic function. From (4.6) it follows readily that
@7 LEt-s ) E s )/(tEs )
1 Tl ks 162
=———@a acos( Y (t-s| k) YK Y4t s-n ¥ [t s)é.
(T- 1t sDEia 5 6
Recall that the calculation of the statistjelt - s; ) is not dependeran whether or not the Hypath

ses 1 to 3 hold. As we shall see below, the results above can be used to carry out grapbical tests

Hypotheses 1 to 3. From (4.5) it follows that that under Hypotheses 1 to 3
(4.8) log(- log/E¢ -s; /)) €H Blogt s} 2log| /| log.5s) &,
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where e(s, t) is an error term that is small when the number of observations is large. From (4.8) we
see thaH and s can be estimated by regression analysis by tre&bip{ - s| as the independent
variable with suitable values of s while keeping/ fixed. The slope in this lineaegression has the
interpretation a?H - land the intercept has the interpretatiorémy |/ |+ log(0.55 )

If we replace Hypothesis 3 with the Hypothesis that the temperature process is a stable process
one can show (togethertwiHypotheses 1 and 2) that
(4.9) log(- log Bt -s; /)[) =& O5)logt s | Iog| |/ logk ) £t
wheret is the scale parameter aed (0,2] is the parameter representing the tail thickn€as, in
the case wherthe aggregate temperatur@pessY has stationary stable increments then
log(- log JEt -s; /)|) will be approximately linear iog |/ |. If, moreover, the¥ process is a self
similar process with ationary stable increments théog(- log [/Et -s; /) |) will be approximately
linearinlog|t- s|.

Equation (4.9) can thuse applied to test the normality hypothesis, or more generally if the
temperatures are generated by a stable distribution. If the increméftarefnot stationary,
log(- log /Bt -s; /) |)will in general not be linear itog |t - s|andlog|/ | even if the increments are
stable. It remains, however, an open question which and how largeptiréudes from stationarity
must be in order to be detected by our graphical method.

The estimation method based on the empirical characteristic function in (4.8)iggeEsted by Kdu
rouvelis (1980), see also Koutrouvelis and Bauer (1982) and Kogon dliain4/i(1998).

Recall that even if all one dimensional marginal distributions are normal it does not riecessar
ly follow that the corresponding joint distribution is multivariate normal. The tests based on tihe empi
ical characteristic function discussdabae can be extended to test whether or not the joint distribution
of the temperatures at several points in time is multinormal.

One can also use the characteristic function techniques to obtain an estimator for the mean
Let
(4.10) S(/)=Esin( /X(Y)) and C(/)=Ecos( /X (t)).

Since

C(/)+iS( } =Eexp(i X(t)) exp( 0:52 /i +Y exp( 0.5% 2 J(cds( )i miff

it follows that
C(/)=exp( 058 #)cos( r and S(/)=exp(0.5¢ %)sin( /
which yield

12



as(/) g/ e

Ty 2

Thus, an estimator ofr: can be obtained as follooutrouvelis, 198Q)Let

(4.11) Arctg

&/) =1<'3T1 sin( /X(K) and &(/) :lé cos( /X (k).
T k=1 T k=1

Evidently, &/) and d,;(/) are consistent estimators f8&/) and C(/). Hence, for suitable choice of
/, (4.11) implies that

.1, A%))
4.12 5= Arct
( ) / rc gé%/—)

IS a consistent estimator fan

We have conducted a series of bootstiragpgimulations in order to check whether or not the
distributions of the estimatdEsE and /& obtained by the characteristic function procedure sre a
ymptotically normal. To téghe hypothesis of asymptotiormality we have computed corresponding
QQ plots which are obtained by bootstrapping based on 1000 simulated time series with length 1000,
see Appendix D, Figure D2. These figures clearly indicate that the estimates are normally distributed.

The correspaotling bootstrap standard errors are givenm =0.0167,\Var€=0.0114 and
arf=0.0021.

4.2. Maximum likelihood estimation and the Whittle estimator

Under the assumption that the temperature ser@$aussian procesme can also apply the method
of maximum likelihood. In particular, if Hypotheses 1 to 3 hold then the@atariance function will

only depend on two parameters, nanté¢lgnd s. For notational convenience I[#Y{(H) be the matrix
with elements

W,(H) =05(t s| B 2¢ sT |t s %
Furthermore, let

X, =(X(@D),X(2),...XT)andl= (1,)n, é, 1
Then the covariance matrix of; can be expressed a$W(H). The loglikelihood function can be
written (apart from an additive constant)
(4.14) logL(m sH)= -(X; - LMW*(H)( X; - 1m/2 $- 0.5 log( ) -0.5log|det W )

where m= EX(1).
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In the case wher€is large it may be complicated to compute the likelihood function. Mowe
er, Whittle has demonstrated (see Beran, 1994) that the likelihood can be approximmatedpnia-
imate likelihood converges to the exact likelihood ascreases without bounds.

GivenH it follows readily from (4.4) that the corresponding conditional maximum likelihood
estimates ofm ands are given by

T

A AWIH)X()
(4.15) fo= s
a aw,(H)
and
R
(4.16) £2=;a<><(r) -

r=1

4.3. Estimation of the autocorrelation function
In the presence of long range dependence the usual estimator for the autocorrelation function may be

seriously biased even if long time series data are available, lbet the usual estimator for the aut

correlationr, as given by

A (X(EHR) XX X)

(4.17) r, = — Al
a ., (X@®- X)?

where X is the sample mean. Under the conditign~ k¢, whereO<g </2,Hoskings (1996)

has obtained that

-2@Q -r.) /
4.18 Er, - r ~ k )
( ) k k (1_g)(2_y2-g‘q
Il n our setting it follows from (3. 4) t hat Hos ki n

/ = $H(2H -1)andg=2 -2H.Hence, byinserting these values into (4.18) we obtain that

r.-1
(4.19) Er. - r, ~_I_‘;_—2H.
The expression in (4.19) can be applied to obtain an asymptotic unbiased estimajorfetr

2H-2
— r.k +T

(4.20) = =TT

Then it followsfrom (4.19) thatEE ~ £, which means thaF7 is an unbiased estimator (asymptot

cally) for r,.
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4.4. Chisquare test

There are several tests available in the literatDne possibility ishie Box Piercé or a Ljung Box
test. However, according to Chen and Dao (2004) the distributions of these tests are not known when
the model exhibit long range dependentfe. havechosen to use a Chguare teswvhether thedata

areconsistent with FGN. LteZ(t) denote the normalized temperature at time (madrdahyl
Z. =(Z(T), Z(2),...,Z(1)) . Define
ZiW'(H)Z, -T

Nead

Under the FGN hypothesi®; (H) is asymptotically normally distributed with zemeean and unit

(4.21) Q(H)=

varianceThe Chisquare test we have applied is based on the staistid) given in (4.21).

5. Data

Data on observed temperatures were collected by Hov Moen from different séioeddden,
2015).These sources aMASA GISS (NASA Goddard Institute for Space Studies), ECA&D ¢Eur

pean Climate Accessment & Data), and the respective national meteorological institutes, such as
SMHI (Swedish Meteorological and Hydrological Institute) and MET Norway (Norwegian Meteor
logical Institute).The data, certified by NASA, comprise time series of temperatures for 1258 weather
stations from more than 100 countries. The time series are available as yearly, monthly argt daily fi
ures. The lengths of the time series vary greatly astagi®ns. Some stations, such as Uppsala, co

tain data for 290 years, with more or less monthly data from 1722 until 2012. Other series are shorter
than two decades. Some of the time series have several periods of missing data. After a number of
selectionprocedures we ended up with 96 time series from 32 courittiesseries that were removed
were either too short or c o nDetails of thalseléctiono procedarer y 0O
are given in a supplement section, see Fortuna (2015).

Appendx C contains plots of the temperature data for 9 selected time series as welt as su
mary information for the 96 cities. The 9 cities have been selected because they have among the best
and longest temperature series. We have used annual data as weiltldg daia adjusted for seaso
ality. Seasonally adjusted temperatures are computed by subtracting the respective monthly means and
dividing by the respective monthly standard deviations.

From the figures we see that the data exhibit local trends and c@dasider the data for
Berlin for example. From about 1750 until about 1830 there seems to be a downward trend, whereas

from about 1840 to about 1870 there is a slight upward trend. Another, and perhaps more dramatic
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picture, appears for Geneva. From atbt920 there seems to be an increasing trend until about 1950,
followed by a steep decreasing trend until about 1965. From about 1965 there is again an increasing
trend. Also the plat of the temperature series fdexandria, Buenos Aires, Paris, MilancaReykga-

vik, show strong cycles and local trends. It is likely that there are measurement errors in these tempe
ature series. Some errors are due to the location of the measurement sites which initially often where
located in central urban areas. For eglamthe thermometer used for temperature recordings in New
York City was located in Central Park and only recently moved outside the city. It has been doc
mented that the temperature has a tendency to increase with increasing urbamisatémnay also

have been varying qualitwer timeof the thermometers used.

We also analyze the data obtalriey Moberg et al. (2005a, 2006 hey have reconstructed
temperatures for the northern hemisphere from the first year AD until 1979 by using data from tree
ringsand lake sediments, see Moberg et al. (2005a,b) for a detailed discussion and description of their
data. See also the discussion by Moberg (2012). These data show considerable variation over time. In
these data there are several cycles with a high swaaigriing from AD 1000 to 1100 and a low swing

occurring during AD 1500 and 1600, see Figure 4.

6. Inference results

6.1. Results from maximum likelihood estimation and the characteristic function
procedure

We only report detailed results for 9 seleatéks among the best and longest time series inahe p

per. The estimates for the remaining stations are given in Appendix D. When the time series is a
Gaussian process the likelihood function is fully identified by the-eaNariance function. Since the
autocorrelation functiofdetermined byH) is invariant under choice of time unit parameter estimates
obtain on the basis of monthly data correspond to parameters for the model with year as time unit. In

Table 1 we have displayed parameter estimateg o andH based on the characteristic function
(m, $,H.) and the Whittle methodH,, ). A striking feature of these estimates is that the Hurst

index does not vary much across weather stationscintfe differences between the estimated of

are hardly significant. Note that in contrast to the characteristic function method the Whittle estimates

Table 1. Estimation results for selected cities based on characteristic function regression and
Whittl e methods. Monthly data

City m Sc Hc H,,

Germany, Berlin 9.158 (0.073) 1466 (0.032) 0.664 (0.019) 0.662 (0.012)
Switzerland, Geeva 10.23 (0.086) 1.265 (0.029) 0.693 (0.019) 0.667 (0.012)
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Switzerland, Basel 9.560 (0.054) 1.279 (0.030) 0.625 (0.018) 0.622 (0.012)

France, Paris 11.015 (0.104) 1.422 (0.032) 0.733 (0.020) 0.672 (0.012)
Sweden, Stockholm 5.690 (0.093) 1.357 (0.031) 0.681 (0.019) 0.721 (0.012)
Italy, Milan 13.258 (0.106) 1.184  (0.027) 0.724 (0.019) 0.709 (0.012)

Czech Republic, Pragu: 9.580 (0.084) 1.475 (0.031) 0.684 (0.019) 0.670 (0.012)
Hungary, Budapest 10.216 (0.057) 1.332 (0.030) 0.627 (0.019) 0.645 (0.012)
Denmark, Copenhagen 8.031 (0.139) 1.225  (0.033) 0.755 (0.020) 0.758 (0.013)

Standard errors are in parentheses

for H are based on the normalized time series. Thus, the Whittle estimates depend on the estimates of
the respective estimated means and stahdeviations that are used to normalize the series.

The estimates are quite precise due to the fact that we use monthly data and therefore have
long time series. We note that the maximum likelihood estimates and the estimated obtained by the
charactestic function regression procedure are quite sim@ar. stationary hypothesis also includes
the hypothesis that the seasonal variation process is stationary. Since our method for seagenal adjus
ment is somewhat crude, tdiisn natye ichatre dibatde ocarded i m
estimates based on annual data yield higher estimatels T@ble D2 in Appendix D alscontains

Table 2. Bias and standard deviation of the characteristic function regression and Whittle ést

mator for H. Bootstrap simulations

H He. Hy,

0.7 0.689 (0.020) 0.695 (0.015)
0.8 0.781 (0.022) 0.796 (0.015)
0.9 0.860 (0.023) 0.897 (0.015)
0.95 0.894 (0.025) 0.945 (0.014)

Number of simulations; N = 1000. Length of time ssyiT = 2000. Standard errors in parentheses

estimates (Whittle estimates) based on annual data. We note that the estitddiasesf on annual

data often are significantly higher that the estimates based on monthly data.

Table 3. Properties @ different estimators of FGN. Bootstrap simulations

H=0.7 H=0.8 H=0.9 H=0.95

m,. (H:) 0.000 -0.005 0.006 0.008
Sw (Ho) 0.996 0.987 0.957 0.937
my, (Hy) 0.000 -0.005 0.006 0.009
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S (Hy) 0.995 0.987 0.958 0.938

m (Hg) 0.0aL -0.005 0.008 0.006
se¢ (He) 0.996 0.989 0.959 0.938
SD m, (He) 0.038 0.156 0.266 0.346
SD s,, (H,)  0.019 0.031 0.057 0.080
sbm, (H,)  0.089 0.156 0.266 0.346
SD s,, (H,)  0.019 0.031 0.057 0.080
SD m (H.)  0.090 0.162 0.280 0.357
SD s. (H.)  0.023 0.028 0.053 0.075

Number of simulations; N = 1000. Length of time series; T = 2000

In Tables 2 and 3 we report tdts from bootstrap simulations of properties of different est
mators. The data are simulated from a FGN process with zero mean and unit variance, and-with 4 di
ferent values oH. From Table 2 we note that the characteristic function regression esta@aios to
be downward biased whéis greater than 0.8, whereas the Whittle estimappearso be unbiased
even forH = 0.95. Table 3 shows bootstrap simulation results for the mean and standard deviation of

different estimators forr and s whenH is estimated by the characteristic function regressioh-met

od and the Whi ts} (He) dnedsp @Hgji o0 Hmé¢hatH, is estimated by the

characteristic function regression method and the Whittle maximum likelihood method, respectively,
whereass is estimated by the maximum likelihood method, conditional on the estimated value of
We note that for values d¢fl greater than 0.8 all the estimators seem to underestisnate

Consider next tests for tiitypotheses 1 and Zraditional tests for normality depend on data
being independent and identically distributedwdwer, time series data are typically correlated,
which implies that such tests will not apfi¥he characteristic function approach outlined atunes
not require independencthus, under the Hypotheses 1 @i follows from (4.8) that if one selects

suitable value¢/ } and plots the left hand side of (4.8) agaifisg / } the plot will be linear with

slope close to 2 if the tempenats are normally distributeth Figure 2 we have displayed cexrr

sponding plots for selected cities. From Figure 2 we seehibgidts are almost perfectly linear with
most slopes between 1.99 and 2.01. In two cases (Basel and Milan) the plots are linear with slopes
equal to 1.96, which indicate a stable distribution (which has slightly heavier tails than a norinal distr
bution).More results are given in Appendix Dhe total set of results for all 96 cities are given in

Fortuna (2015). In order to check whether the characteristic function regression estimation method is

® See Beramnd Ghost{1991) for another test of normality in time series with long eatigpendence.
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unbiasedve have conducted bootstraipulations. The reswdtare given in Table 4, which clearly

indicate that the method yields unbiased resBtemdard errors are obtained by 1000 bootstrap-sim

lations Recall that whera = 2 the Gaussian hypothesis is satisfied.

As discussed above, thearacteristic function regression approach dso be applied for

testing Hypotheses 1 and\&e have plottethe left hand side of (4.8) for= 1 ,

2,

€10,

log|t- s| The resulting plots are displayed in Figure 2 for the selextied. Additional results are

agait

given in Appendix D. The complete set of results are given in Fortuna (2015). We note that in most

cases the plots are almost perfectly linear. In 4 cases the plots differ substantially from linearity and in

a few other casabeplots are only approximately lineéBulina, Sort, Plymouth, Jacksonville). We

have subsequently applied a Ghjuare test method to test if FGN is consistent with the temperature

data. Recall that whed is known the test statistic®) follows a stadard normal distributiomhich

implies thatthe corresponding 5 per cent confidence interval is equall®6,1.96) In Table 5 we

Table 4. Properties of the characteristic function regression estimation method

City a SD
Germany, Berlin 2.0003 (0.0054)
Switzerland, Geneva 2.0004 (0.0056)
Switzerland, Basel 2.0001 (0.0050)
France, Paris 2.0002 (0.0060)
Sweden, Stockholm 2.0005 (0.0053)
ltaly, Milan 2.0003 (0.0059)
Czech Republic, Prague 2.0002 (0.0057)
Hungary, Budapest 2.0001 (0.0050)
Denmark, Copenhagen 2.0006 (0.0063)

Table 5. Chisquare statistics of the FGN hypothesis for selected cities

City H, ™ QH.)  Q(Hy)
Czech Republic, Prague 0.684 0.670 -0.050 -0.710
Denmark, Copenhagen 0.755 0.758 -0.857 -0.542
France, Paris 0.733 0.672 1.432 -2.659
Germany, Berlin 0.664 0.662 -0.379 -0.488
Hungary, Budapest 0.627 0.645 -0.674 -0.107
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Italy, Milan 0.724 0.709 -1.200 -2.200

Sweden, Stockholm 0.681 0.721 -1.071 1.245
Switzerland, Basel 0.625 0.622 -0.268 -0.343
Switzerland, Geneva 0.693 0.667 -0.082 -1.487

have reported results for selected cities. Only gtagegBuenos Aires, Argdina and Cap Otway,
Australia) out othe 96 series are the models estimated by the characteristic function regression est
mates found to bimconsistent with FGN, whereas in 8 cagesmodels estimated by the Whittle
maximum likelihood method are founal be inconsistent with FGN. For Buenos Airesdharactes-

tic function regression and Whittle estimates are 0.79 and 0.71. When we instedd afhR6 the
corresponding value d (Buenos Airespecomes- 0.1011which means that the model passes the

test. For Cap Otway the characteristic function regression and Whittle estimates are 0.80 and 0.71,

respectively. When we apply = 0.78 the correspondin@ becomes 0.2462, which shows thad th

model passes thehi-square test also in this case. The results above indicate that the characteristic
function regression approach may perhaps be more robust than the Whittle maximum likelihood
method as regards departure from the FGN hypothesis. Véealsvapplied the Clsiquare test in the
case with annual data. In this case we obtain that the model is rejected (using characteristic function
estimates) in 10 cases (out of 96 seriEste, however, that the Chjuare test we have applied so far

is aconditional test, based on the assumption that the paramhieténown. WherH is replaced by

its corresponding estimate, then it is not known what the corresponding unconditional distribution of

Q is. To this end, we have conded a series of sintation experiments that shavan wherH is
estimated by the Whittle method then the distributioofs stable with zero mean, maximally skew

to the right witha =1.99 whenH = 0.7 andH = 0.8, anda =1.96 whenH = 0.9. The corresponding
95 per cent confidence intervals gre.415,2.415)(- 3.560,3.560 and (- 5.169,11.576 In Figure

D1 in Appendix D we report graphical tests for the hypsiththat the unconditional distribution Qf
is stable, based on the characteristic function approach discussed above. From Figure D1 we see that
the graphical tests indeed support the hypothesisQhiatstable. It follows that when we compute
confidence intervals based on the unconditional (stable) distributi@ntbien the moddk notrejed-
edin any case

When looking at some of the temperature graphs it may seem puzzlitigetistditionarity
hypothesis is not rejected. For example, the temperature series of Buenos Aires show a positive trend

from about 1910 until 2006 and the temperature series of Milan show a positive trend from about 1860
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to 2009. The explanation is that,the presence of long range dependence, such patterns are indeed
possible.

To illustrate this we have simulated FGN processes for different valligsset Figure 3. &
call first that since the autocorrelation function of FGN is invariant under chbiteeounit, the time
unit in Figure 3 may be one year, 10 year or 100 years. However, the corresponding amplitudes will be
affected by a change of time unit. I f, for examp
the corresponding standardveiion is found by dividing the standard deviation based on annual data
by 10" " . Recall also that most of the estimatesidfased on annual data have order of magnitudes in
the interval (0.7, 0.9)Vith H = 0.7 we note that from abb625 to about 720 time units there seems to
be a decreasing trend, whereas from about 260 to abotin&Qnitsthere is an increasing trend.

WhenH = 0.8 and 0.9 this type of patterseem to be more pronounced. In thesas we note that

the local tends may be several hundred time units long. To simulate FGN processes we have used the
Choleskymethod to decompose the autocorrelation matrix in order to obtain the corresponding mo

ing average representation of the process from which one can sirhelgi®tessisingiid normal

draws.

In order to investigate to which extent it is possible to detect departure from stationarity given
that the Acored stationary process is FGN, we ha
We have simulated 18@wgrs of the following process: During the first 120 years the process is a
sumed to be FGN with zero mean and unit variance. The last 60 years the process is assumed to be
FGN plus a linear trend with positive slope, starting at zero in year 120. WéhaseHisquare test to
see howsteep the trend has to be before the FGN hypothesis is rejed¢teds lbut that therendhas
to be equivalent to at leaah increase adbout 1.8 degrees (Celsius) in 50 ydmforedeparture from
stationarity can be disvered, wheid = 0.7.WhenH is greater than 0.7 the slope had to be even
steeper in order to be detected by our test. The reason is thathilaeases the FGN exhibits-i

creasingly complex patterns with pronounced stochastic trends and cycles.
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Figure 2. Graphical tests of selsimilarity and normality
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Self-similarity test — France, Paris

Estimated H by ragression = 0.73
-1.0 + .-
oY
1z 'l
L
-14 -
rf.
-1.6 .
.
18 &
o 'II“

and .

LA

T T T T T

L0 o8 10 15 20

Self—similarity test - Sweden, Stockholm

Estimated H by regression = 0.63
"
L
-1.4 - .
.r.'
'r
-1.6 T
™
K
-1 —a
.r"
:J'
20+ .7
L.
T T T T T
oo a5 1.0 15 20
Self-similarity test - ltaly, Milan
Estimated H by regression = 0.72
"
’!
-1.2 o "
-
-1.4 o .
A
-16 o z
¥
.
15 'y
M
.
a-"l-
204 -
'_.i
T T T T T
oo a5 1.0 15 20

Mormality test — France, Paris

Estimated alpha = 2
¥
]
-14 -
~
J-.F
-2 .
i
e
-3 - —
.
-4 JJ'
.
¢’
T T T T T
=20 -1.5 -1.0 -5 0.0
Mormality test - Sweden, Stockholm
Estimated alpha = 2.01
l'l
-1 4 -
¥
K
-2 ,"'.
d‘,.’
.
-3 -
-
J-'.-
-4 o
.
'.'
se
T T T T T
=20 -1.5 -1.0 -5 0.0
Mormality test — Italy, Milan
Estimated alpha = 1.8
L )
w
-1 -
>
r‘*.
_2 - ""
o
R
_3 - -J"
.'J-
&
r
-4 - =
.r"r
K
.
-5 &
T T T T T
=20 -1.5 -1.0 -5 0.0

23



Self-similarity test - Czech Republic, Prague
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Figure 3. Simulated FGN process with zero mean and unit variance

FGMN simulation, H = 0.7

FGM simulation, H =08

FGM simulation, H=10.9

25



7. Analysis based on two millennia temperature reconstructions
As mentioned above, the data obtained by Moberg et al. (2@60&b¢constructed data and it is gier

fore not evident at all that the FGN would be a suitable model in this case. Figure 4 displaysthe reco
structed temperatures from the first year AD to 1979. The reconstructed data indicate tHAatite 16

the 17" centuries were much colder that the late middle age and the recent centuries. We have applied
the characteristic function regression approach and the Whittle maximum likelihood estimat&n proc
dure, as well as the graphical and-GQuare testing procedwesimilarly to the case with thé-o

served temperature series. Both the plots of the normality test and the plots ofsimaikseity test

are close to being perfectly linear, thus consistent with the FGN hypothasisigure .5 Wenote

that the awdcorrelation function decreases very slowlsee Figure 6The estimate dfl by the chare:

teristic function regression method igF=0.917 From Table 2 we note that the characteristic function

regression stimatorunderestimatesi whenH is higher than 0.8. The estitesbased on the Whittle
method yieIdsI-Ez 0.990 with standard deviation 0.61The usual empirical estimaties /7 and s

are given byf&= 0.345and £=0.220 The maximum likelihood method (conditional By and the
characteristic function regression method yield almost the same estimatesnofs, and the coe-

sponding standard deviations are 0.38 and Od3pectivelyBy using theunconditionalChi-square

test proedure we find, however, that both the characteristic function regression and the Wiiittle est
mates imply that thEGN hypothesis igotrejected. It turns out that the Céguare test depends
strangly on the level oH. When computing for H = 0.94, 0.95 and 0.96, respectively, we obtain the
values-5.27,-0.94 and 5.60, which shows that wher 0.95 thecorresponding absolute value ¢f

is close to its

Figure 4. Recmstructed temperature data by Moberg et al.(2005)
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Figure 5. Tests of selsimilarity and normality
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minimum Recall that the \Mttle maximum ikelihood method may not be robust against the depa
tures from the FGN assumptioVe see from Figure 4 below that whdre 0.95 the FGN model
underpredicts the first order autocorrelation but yields close predictions for the oth@Hageason

why thefirst order empirical autocorrelation is high may be dunédact that theeconstructed data

rely heavily on particular smoothing procedures (Moberg et al. 200ba3, the estimatéF=0.95
may therefore be the better estimate.

Mills (2007) has also analyzed the data set obtained by Moberg et al. (2005). Similarly to our
analysis, he found that these data are consistent with long memory characteristics and can be repr
sented by an autoregressive fractionally integrated movinggeerocess that is both stationary and

mean reverting. He also showed that if one allows for a smoothly varying underlying trend function,
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then long memory disappears, implying that recent centuries have been characterized by trend tempe
atures trendingpwards. Thus, his analysis providesther example of the difficulty of discrimira
ing between competing models by statistical arguments alone, see Mills (2010).

8. Concluding remarks

The purpose of this researchsHzeen to establishstochastic modehat is able to represent therte
perature dynamics reasonably wile have resorted to an empirical strategy which dependsron pa
ticular invariance hypothes#isat imply the FGN modeDne of theséiypothess, namely self
similarity, can be motivatedn theoretical grounds becaudata are temporal aggregates. Thus, in
contrast to traditional statistical pqwachesour model can in part be given a theoretical justification.

The FGN model is simple in the sense that it only depends on 3 parameters, pararaly
ters representing the mean, variance and temporal dependence, respectively. Thus, in contrast to typ
cal models based on ARIMAr similar formulations only one parameter represents thegeral
dependenceand the model therefore yields rather styoestrictions on dat&Ve havaisednonpaa-
metric graphical techniques based on the empirical characteristic futtctest the FGN modehl-
so, we have applied@hi-squargest to this endviost of the test resuliadicate that our hypotheses
areconsisent with the temperature data.other words, the empirical analysis based on the observed
and reconstructed temperatures indicatettiedata are consistent with the FGN modrethis re-
spect, ouanalysis isanalogous tilills (2010) who alsdinds that temperature data are consistent
with a stationarynodel formulation.

Due to seHlsimilarity, theautocorrelation functionf the FGN procesis independent of the
time unit the temperature is measuredrinus, a change of unit will only affettteamplitude As a
result, the temperature variations will contain
smaller amplitudes than the short waves.

Since our model is extremely restrictive and is still able to pass our tests it indicathe tha
FGN model gives a pretty good representation of the underlying temperature dynamics.

Finally, we haveconducted a simulation experiment based on a maodification of the FGN
model allowing fora linear trend with positive slope during thst 60 yearslt turns out that theeend
has to besubstantially higher than the corresponding observed ttefdsedeparture from stationiar
ty can be discaxredby means of our test§hus, using only information from temperature data alone
it seems difficultto reveal if any systematic change has taken place during the last 60 years (say), as a

result of increased levels of greenhouse gases.
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Appendix A

Proof of Proposition 2:
Fors < t, we obtain that

(A1) Co(Y(3 XN= EYV)sOt D5 EM's HYt (Y sk
=05(EY(9° +EXY EY)» ®X} 056 EYS &'t (BY (Y)i
=0.5(EY(9*> +EXY -EYt )} 05:% Ey* *t+By® ( t)}% -@ri
=0.5%{s™" 4" @ 9™}
wheres? =VarY(l) 2Var( X(1). From (A.1) we can now readily obtain the agtivariane function
for the temperature procegX(9), T2 t O}, because, fos<t,
(A2) CoUX(9, X})= Cov X), X t- sB) €qv®), (vt €) +(Y1))
=EYD)Y(t-s B EYD Yt p055[(t s1f' R(t F (-t sif+]

The formula in (A.2) will also hold in the general case for sagdt after a slight rodification, and

the resulting formula in the general case is;
EYD)Y(t- s4) EYD Yt 3 05°[(t $-1§7 +2]1t-3 |t 4+1
This completes the proof.

Proof of Proposition 3:

Consider a FBMY( b), t2 0}, wherebis a positive constant, ands measured in years. Thus, if for
exampleb = 10, the time unit of the process is 10 year. By thesselilar property it follows that
CoY(b), X bY= Cav'b M,t"d (M)s=*b Qoy) ()
and
VarY(b = B" varY

Hence,

Corr(Y(bt), Y(b3)= Co¢ ¥ Bt ¥ b)ﬂ\j VatY)bt VArY)
=CouY(), Y 3;)/1f Var{)t Varl):

which proves the assertion i6BM. Consider next the FGN. Similarly to the case above,
ColY(b)- Y btd), XY bs -t(bsly) €oVb(yt"b(YH ") s B-Y1p
b*Co(Y(}- X td), X} -Y s1)

and

Var(Y(bd- Y t-1) ~atB Yt B ¢ tl)- B=varyt (Y 1))

From these relations the invariance result for FGN follGvags completes the proof.
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Appendix C

Annual temperature figures and summary data information

Figure D1. Plots of temperature series for 9 selected cities
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Temperature time series for Czech Republic, Prague
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Table C1. Summary information about data

Weather station First recor- Lastrecor- Years Missing  Non missing
ded year ded year years months

Argentina, Buenos Aires 1856 2006 151 1 1781
Australia, Adelaide 1881 2012 132 2 1567
Australia, Alice Springs 1881 2012 132 2 1564
Australia, Cap Otway 1865 2012 148 18 1731
Austria, Kremsmunster 1876 2009 134 2 1601
Austria, Vienna 1855 2009 155 10 1829
Belgium, Uccle 1833 2008 176 1 2108
Canada, Winnipeg 1881 2012 132 3 1575
Croatia, Zagreb 1861 2008 148 1 1765
Czech Republic, Prague 1775 2005 231 1 2764
Denmark, Copenhagen 1798 2011 214 0 2568
Denmark, Vestervig 1875 2012 138 1 1648
Egypt, Alexandria 1870 1990 121 10 1395
France, Nantes 1851 2009 159 1 1893
France, Paris 1757 2009 253 1 3030
Germany, Berlin 1756 2012 257 1 3083
Germany, Hohenpeissenberg 1781 2012 232 1 2782
Germany, Karlsruhe 1876 2008 133 3 1586
Greece, Athens 1858 2009 152 1 1814
Greenland, lllulisat 1873 2012 140 2 1674
Greenland, lvittuut 1873 1960 88 0 1056
Hungary, Budapest 1780 2009 230 2 2753
Iceland, Djupivogur 1873 2009 137 4 1635
Iceland, Reykjavik 1870 2012 143 1 1711
India, Agra 1881 1987 107 3 1269
India, Allahabad 1881 2012 132 5 1517
India, Bombay 1881 2012 132 1 1569
India, Indore 1881 2012 132 1 1569
India, Madras 1881 2012 132 1 1569
India, Nagpur 1881 2011 131 1 1565
Israel, Jerusalem 1861 2004 144 13 1660
Italy, Bologna 1814 2009 196 3 2334
Italy, Milan 1763 2009 247 3 2943
Japan, Hiroshima 1881 2005 125 0 1489
Japan, Nagasaki 1881 2012 132 1 1582
Japan, Tokyo 1876 2012 137 1 1642
Kazakhstan, Kazalinsk 1881 1990 110 1 1307
Luxembourg, Luxembourg 1838 2008 171 2 2036
New Zealand, Wellington 1864 1989 126 1 1503
Norway, Andgya 1868 2012 145 1 1739
Norway, Bergen 1858 2012 155 0 1860
Norway, Bodg 1868 2012 145 0 1740
Norway, Dombas 1865 2012 148 1 1773
Norway, Karasjok 1876 2012 137 0 1644
Norway, Mandal 1861 2008 148 2 1760
Norway, Oksgy Lighthouse 1870 2012 143 0 1716
Norway, Ona 1868 2012 145 6 1717
Norway, Oslo 1816 2012 196 0 2364
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Norway, Rgros
Norway, Tromsg
Norway, Utsira
Norway, Vardg
Pakistan, Lahore
Portugal, Lisbon
Romania, Sulina

Russia, Archangelsk

Russia, Sort

Russia, St Petersburg

Spain, Gibraltar
Sweden, Bromma

Sweden, Stockholm

Sweden, Tullinge
Sweden, Uppsala
Switzerland, Basel

Switzerland, Geneva

UK, Aberdeen
UK, Belfast
UK, Cambridge
UK, Durham
UK, Edinbourg
UK, London
UK, Plymouth
USA, Atlanta
USA, Bismarck
USA, Boise
USA, Boston
USA, Chattanooga
USA, Cincinatti
USA, Columbus
USA, Concord
USA, Des Moines
USA, Detroit
USA, Dodge City
USA, Fargo
USA, Galveston
USA, Indianapolis
USA, Jacksonville
USA, Knoxville
USA, Las Vegas
USA, Madison
USA, Marquette
USA, Milwaukee
USA, Mobile
USA, Nashville
USA, New Orleans
USA, New York

1871
1868
1868
1858
1876
1881
1881
1881
1881
1881
1852
1756
1756
1756
1722
1755
1753
1881
1881
1871
1847
1785
1841
1865
1881
1881
1881
1881
1881
1881
1881
1881
1881
1881
1881
1881
1881
1881
1881
1881
1875
1881
1881
1881
1881
1881
1874
1822
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2012
2012
2012
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Appendix D
Estimation and test resuls

Table D1. Estimation results using the characteristic function regression and the Whittle
method. Monthly data

Weather station m Sc He H,, SD H,,
Argentina, Buenos Aires 16,7780 0,9941 0,7852 0,7127 0,0156
Australia, Adelaide 16,7314 0,8357 0,6959 0,6624 0,0165
Australia, Alice Springs 20,7752 1,1207 0,7002 0,6834 0,0166
Australia, Cap Otway 13,8558 0,6599 0,8031 0,7437 0,0159
Austria, Kremsmunster 8,6352 1,2509 0,6546 0,6506 0,0163
Austria, Vienna 9,9474 1,3873 0,6839 0,6593 0,0152
Belgium, Uccle 9,9700 1,2939 0,6601 0,6430 0,0141
Canada, Winnipeg 1,8403 1,9953 0,6543 0,6599 0,0164
Croatia, Zagreb 11,5150 1,3627 0,6539 0,6505 0,0155
Czech Republic, Prague 9,5800 1,4748 0,6837 0,6702 0,0124
Denmark, Copenhagen 8,0305 1,2246 0,7545 0,7582 0,0131
Denmark, Vestervig 7,8403 1,1152 0,7246 0,7635 0,0164
Egypt, Alexandria 19,9002 0,5478 0,7734 0,7981 0,0179
France, Nantes 11,6940 1,1150 0,6432 0,6433 0,0149
France, Paris 11,0153 1,4220 0,7326 0,6722 0,0119
Germany, Berlin 9,1581 1,4658 0,6642 0,6618 0,0117
Germany, Hohenpeissenberg 6,3958 1,4604 0,6173 0,6049 0,0122
Germany, Karlsruhe 10,1956 1,2995 0,6421 0,6293 0,0163
Greece, Athens 17,9217 0,8921 0,6824 0,6982 0,0154
Greenland, lllulisat -4,7514 2,2368 0,7384 0,7250 0,0161
Greenland, lvittuut 0,6765 1,4497 0,7821 0,7513 0,0204
Hungary, Budapest 10,2157 1,3317 0,6270 0,6450 0,0124
Iceland, Djupivogur 3,6904 1,0356 0,7620 0,7364 0,0163
Iceland, Reykjavik 4,3958 1,0192 0,7312 0,7109 0,0159
India, Agra 25,8429 0,8419 0,7313 0,7525 0,0186

India, Allahabad 26,0945 0,7720 0,6993 0,6943 0,0168
India, Bombay 27,3723 0,4721 0,7828 0,7882 0,0168
India, Indore 24,7188 0,7275 0,7343 0,7087 0,0166
India, Madras 28,5635 0,4788 0,7512 0,7527 0,0167
India, Nagpur 26,9237 0,7010 0,6965 0,7084 0,0166
Israel, Jerusalem 17,2282 0,9798 0,6846 0,6992 0,0161
Italy, Bologna 13,8586 1,1764 0,7020 0,6975 0,0136

Italy, Milan 13,2584 1,1841 0,7240 0,7091 0,0121
Japan, Hiroshima 15,9150 0,7445 0,7311 0,7326 0,0171
Japan, Nagasaki 16,7045 0,7607 0,7377 0,7150 0,0166
Japan, Tokyo 15,6309 0,8553 0,7949 0,7444 0,0163
Kazakhstan, Kazalinsk 8,2037 1,7548 0,6094 0,6555 0,0180
Luxembourg, Luxembourg 8,4252 1,4020 0,6752 0,6582 0,0144
New Zealand, Wellington 12,7180 0,6044 0,7738 0,7518 0,0171
Norway, Andoya 3,7513 1,0612 0,7232 0,7253 0,0158
Norway, Bergen 7,5230 1,0889 0,6781 0,6869 0,0152
Norway, Bodo 4,5494 1,2171 0,6803 0,6978 0,0157
Norway, Dombas 1,4775 1,5986 0,6327 0,6636 0,0155
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Norway, Karasjok
Norway, Mandal

Norway, Oksoy Lighthouse

Norway, Ona
Norway, Oslo
Norway, Roros
Norway, Tromso
Norway, Utsira
Norway, Vardo
Pakistan, Lahore
Portugal, Lisbon
Romania, Sulina
Russia, Archangelsk
Russia, Sort
Russia, St Petersburg
Spain, Gibraltar
Sweden, Bromma
Sweden, Stockholm
Sweden, Tullinge
Sweden, Uppsala
Switzerland, Basel
Switzerland, Geneva
UK, Aberdeen
UK, Belfast
UK, Cambridge
UK, Durham
UK Edinbourg
UK, London
UK, Plymouth
USA, Atlanta
USA, Bismarck
USA, Boise
USA, Boston
USA, Chattanooga
USA, Cincinatti
USA, Columbus
USA, Concord
USA, Des Moines
USA, Detroit
USA, Dodge City
USA, Fargo
USA, Galveston
USA, Indianapolis
USA, Jacksonville
USA, Knoxville
USA, Las Vegas
USA, Madison
USA, Marquette
USA, Milwaukee
USA, Mobile
USA, Nashville
USA, New Orleans
USA, New York

-1,9908
7,1076
7,5188
7,0728
5,7741
0,2107
2,6923
7,4181
1,2493
24,5265
16,3263
11,2567
0,2841
14,0588
4,7851
17,5787
5,8660
5,6898
5,7832
5,4100
9,5601
10,0229
8,1199
9,1002
9,8094
8,4830
8,4451
10,2138
10,7246
17,2729
5,5504
10,6934
10,5947
16,2654
12,1536
11,2329
7,2351
9,9495
9,5838
12,8572
4,8049
21,4536
11,5220
20,0567
14,9453
11,1652
7,8499
3,7917
8,6872
19,3524
15,4640
20,6607
11,9288
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1,9842
1,1017
1,0430
0,8664
1,3513
1,6435
1,1472
0,8563
1,1079
0,8160
0,9416
1,1088
2,0211
0,9248
1,7212
0,6538
1,3941
1,3573
1,3610
1,4928
1,2786
1,2647
0,8246
0,7924
1,0442
0,9478
0,8442
1,1508
0,7619
0,9995
2,0060
1,3891
1,1244
1,0871
1,3755
1,2730
1,2042
1,4644
1,2895
1,3826
1,8093
0,8351
1,2831
0,9156
1,1045
1,2232
1,5128
1,5050
1,4763
0,8849
1,1072
0,9546
1,2643

0,6547
0,6815
0,7194
0,7112
0,6933
0,6669
0,6698
0,7350
0,7647
0,6494
0,7686
0,6529
0,6752
0,6395
0,6966
0,7734
0,6937
0,6814
0,6717
0,6904
0,6247
0,6933
0,6905
0,6496
0,6782
0,6980
0,6438
0,7214
0,6243
0,6321
0,6549
0,6544
0,6934
0,6371
0,6555
0,6292
0,6871
0,6256
0,6586
0,6263
0,6559
0,6621
0,6109
0,6078
0,6245
0,6429
0,6414
0,6884
0,6894
0,6170
0,5814
0,6961
0,7451

0,6794
0,7236
0,7715
0,7491
0,7244
0,6951
0,6905
0,7679
0,7512
0,6929
0,7105
0,6995
0,6611
0,6935
0,6956
0,7651
0,7359
0,7213
0,7272
0,7179
0,6223
0,6675
0,7035
0,6651
0,6726
0,6856
0,6696
0,6855
0,6763
0,6408
0,6403
0,6563
0,6703
0,6474
0,6448
0,6306
0,6622
0,6320
0,6533
0,6112
0,6551
0,6881
0,6220
0,6509
0,6296
0,6468
0,6475
0,6860
0,6758
0,6509
0,6030
0,6955
0,6985

0,0161
0,0157
0,0160
0,0160
0,0136
0,0159
0,0157
0,0159
0,0156
0,0162
0,0168
0,0168
0,0164
0,0182
0,0167
0,0154
0,0119
0,0121
0,0120
0,0114
0,0118
0,0118
0,0165
0,0164
0,0158
0,0147
0,0130
0,0149
0,0166
0,0163
0,0163
0,0164
0,0164
0,0163
0,0163
0,0163
0,0164
0,0163
0,0164
0,0162
0,0164
0,0165
0,0162
0,0164
0,0163
0,0172
0,0163
0,0166
0,0164
0,0164
0,0162
0,0165
0,0139



Table D2.Estimates based ormnnual data

Weather station Hw SE Hw

Argentina, Buenos Aires 0,938 0,055

Australia, Adelaide 0,781 0,058
Australia, Alice Springs 0,708 0,058
Australia, Cap Otway 0,869 0,059
Austria, Kremsmunster 0,782 0,058
Austria, Vienna 0,806 0,055
Belgium, Uccle 0,739 0,050
Canada, Winnipeg 0,728 0,058
Croatia, Zagreb 0,780 0,055

Czech Republic, Prague 0,716 0,043
Denmark, Copenhagen 0,753 0,045

Denmark, Vestervig 0,733 0,056
Egypt, Alexandria 0,862 0,064
France, Nantes 0,720 0,052
France, Paris 0,802 0,042
Germany, Berlin 0,712 0,041
Germany, Hohenpeissenberg 0,684 0,043
Germany, Karlsruhe 0,819 0,059
Greece, Athens 0,788 0,054
Greenland, lllulisat 0,805 0,057
Greenland, Ivittuut 0,812 0,072
Hungary, Budapest 0,663 0,043
Iceland, Djupivogur 0,841 0,058
Iceland, Reykjavik 0,885 0,057
India, Agra 0,844 0,066
India, Allahabad 0,807 0,059
India, Bombay 0,887 0,059
India, Indore 0,899 0,059
India, Madras 0,906 0,059
India, Nagpur 0,727 0,058
Israel, Jerusalem 0,654 0,057
Italy, Bologna 0,845 0,048
Italy, Milan 0,826 0,043
Japan, Hiroshima 0,738 0,059
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Figure D1. Graphical tests of the distribution of the Chisquare statisticsQ when
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Figure D2. Graphical tests of asymptotic normality of the charact
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