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1. Introduction 

The question of whether or not a change of the temperature level is taking place has been vividly de-

bated during the last decades. It seems by now to be a widely accepted view that there has been a sys-

tematic change in the temperature level in recent decades. This question is, however, not as easy to 

answer as it may seem at first glance. Some of the recorded series of temperatures exhibit local trends 

and cycles that seem some times to persist- more or less - up to several decades. In the absence of a 

physical model that is capable of explaining the weather dynamics precisely, an interesting question is 

whether the temperature fluctuations are consistent with outcomes of an underlying stationary stochas-

tic mechanism (process), and what the features of such a stochastic process are. The difficulty of as-

sessing whether or not there is a systematic change in the temperature level is related to several fac-

tors: First, the lengths of the available observed time series of temperature data are limited. Few of the 

recorded temperature series are longer than 250 years. Although 250 years may seem like a rather long 

time, it is not so when it comes to examining properties such as long range dependence.  

In recent years there have also been attempts to reconstruct temperature data from other 

sources. One important data set has been obtained by Moberg et al. (2005a) who have reconstructed 

annual temperatures from 1979 back to the first year AD based on information from tree rings and 

lake sediments. Results from ice core drillings in Greenland and the Antarctic ice cap have also been 

used to reconstruct temperatures and CO2 concentrations from about 800,000 years BC, see Jouzel et 

al. (2007).
1
 

 Statistical time series analysis based on actual recorded temperature time series include 

Bloomfield (1992), Bloomfield and Nychka (1992), Galbraith and Green (1992), Koenker and Schorf-

heide (1994), Harvey and Mills (2001), Kärner (2002),  Gil-Alana (2003, 2008a,b), Gay-Garcia and 

Estrada (2009), Mills (2007, 2010), Estrada et al. (2010), Kaufmann et al. (2010), Schmith et al. 

(2012), and Holt and Teräsvirta (2012). Mills (2007) has analyzed the reconstructed data obtained by 

Moberg et al. (2005a). The advantage with the reconstructed data sets is that they cover quite long 

time periods. However, since they are reconstructions the extent of measurement error might be sub-

stantial.   

 With few exceptions, the papers cited above apply univariate statistical tools for analyzing 

time series without any a priori restrictions derived from theoretical considerations. When the 

discrimination between statistical models is primarily based on goodness-of-fit considerations the 

obvious problem of discriminating between specifications that yield more or less the same fit but 

                                                      

1
 Data from ice core drillings show that there is a close relationship between the mean world temperature and the global CO2 

concentrations. However, since the temperature data are not recorded directly but obtained by a particular reconstruction 

procedure they therefore contain measurement errors. Second, the data are only obtained at irregular time intervals typically 

ranging from each 500 to 1000 years apart; see Davison and Turasie (2013). 
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produce substantially different out-of-sample predictions is highly problematic. This difficulty is 

illustrated by recent discussions in the literature (Kaufmann et al., 2010, and Mills, 2010), about 

whether the temperature process contains a stochastic or a deterministic trend. This difficulty is not 

likely to be resolved by statistical arguments alone. If a precise physical theory were available one 

might imagine applying a combination of a priori physical assumptions and statistical modelling 

techniques, as have been done by for example Aldrin et al. (2012) and Schmith et al. (2012). Such a 

strategy faces, however, serious difficulties because existing physical theories are simply not 

sufficiently precise for the sake of providing reliable quantitative relations for explaining temperature 

fluctuations. They are therefore not very helpful for discriminating between competing statistical 

formulations. Still, it would clearly be desirable to follow an alternative strategy that is based on 

plausible theoretical hypotheses that are formulated independently of the data at hand, and that implies 

substantial restrictions on the data. Furthermore, it would certainly be of great advantage if these 

hypotheses could be tested non-parametrically without introducing ad hoc auxiliary assumptions about 

functional form and distributions of random elements.  

In this paper we have taken a modest version of the alternative strategy, based on three key 

hypotheses which may be viewed as invariance principles. Our approach is simple in the sense that no 

explanatory variables are introduced and no deeper explanations of the temperature variations are pro-

vided. The first hypothesis asserts that the temperature process is stationary. The second hypothesis 

asserts, loosely speaking, that the distribution of the average temperature (normalized to have zero 

mean) over a time period does not depend on the length of the period apart from a scale transfor-

mation. This hypothesis is equivalent to a hypothesis of self-similarity. The third hypothesis asserts 

that the temperature process is Gaussian.  

The self-similar hypothesis asserts that the temperature process (normalized to have zero 

mean) does not depend in an essential way on the time unit in use, either it is annual or monthly aver-

ages (adjusted for seasonal variations). For example, in such a process the distribution of five year 

average temperatures is not different from the distribution of eight year average temperatures, apart 

from a suitable scale transformation. In other words, the second hypothesis asserts that the average 

temperature up to time t follow the same distributional law as the average temperature up to time bt, 

for positive b, apart from a change of scale of the process.  

The idea of self-similarity emerged from work done by Hurst (1951) who analyzed discharges 

of the river Nile in Egypt. It is however, Mandelbrot and his co-workers that have demonstrated the 

power and importance of the self-similarity property, see Mandelbrot (1963, 1965, 1982), Mandelbrot 

and van Ness (1968), and Mandelbrot and Wallis (1968, 1969). A self-similar phenomenon or fractal 

feature exhibits a repeating pattern that displays at every scale. In other words, a fractal has invariance 
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properties as it leaves certain qualitative properties of the phenomenon unaffected by scale transfor-

mations. Examples of phenomena known or anticipated to have fractal features are: mountain ranges, 

river networks, snow flakes, fern leaves, fault lines and lightning bolts, etc. In several scientific fields, 

such as physics and measurement theories, invariance assumptions have been found to play an im-

portant role in narrowing down the family of sensible mathematical specifications relevant for the 

phenomenon under study. A particular famous example is Einsteinôs special theory of relativity where 

one key assumption is an invariance assumption that was formulated a priori, i.e., independently of the 

data.
2
 In physics, dimensional analysis is a set of procedures used to discover candidates to solutions 

of complex problems. The principle of dimensional invariance asserts that a numerical relation that 

expresses a valid relationship between physical variables has the same mathematical form no matter 

what scales are used to measure the physical variables (Krantz et al., 1971, Falmagne and Narens, 

1983, and Narens, 2002). Sedov (1959) has used the following argument to justify dimensional invari-

ance: Since there is no ñrightò and ñobjectiveò time unit, there is no reason why the law in question 

should depend in a fundamental way on the time scale in use. For a further discussion, see Krantz et al. 

(1971, pp. 503-506).
3
 In our case the self-similarity hypothesis can also be motivated by a result ob-

tained by Lamperti (1962). Lamperti demonstrates that under rather weak regularity conditions tem-

poral aggregation will, asymptotically, yield self-similarity of the resulting aggregate process.  

At first glance it seems that the Gaussian hypothesis may be motivated by the Central limit 

theorem because the annual (and monthly) temperatures are averages of daily temperatures. It is, how-

ever, not evident that the conditions of the Central limit theorem are fulfilled because the temperatures 

may be highly serially correlated in a manner that violates the usual mixing conditions (Billingsley, 

1968). 

The invariance hypotheses turn out to imply quite strong restrictions on the model. They imply 

that the temperature process is a so-called Fractional Gaussian noise process (FGN), see for example 

Samorodnitsky and Taqqu (1994). The FGN process is a Gaussian process with a particular restrictive 

serial correlation structure. In contrast to for example ARMA or State Space formulations the FGN 

process exhibit long range dependence and the autocorrelation structure only depends on one parame-

ter, namely the so-called Hurst index, H.
4
 Furthermore, its autocorrelation function is invariant with 

respect to change of time unit.  

                                                      

2
 Einstein (1905) formulated the first invariance (principle of relativity) as: òthe state of rest and the state of motion at 

constant speed cannot be distinguished by any experiment performed by observers of either systems.ò The second invariance 

assumption is that the speed of light is the same whether or not the source of light is moving towards- or away from the 

observer. Whereas the first principle is entirely theoretical the second one is based on extensive measurements. 
3 What is remarkable is that fundamental equations of physics are dimensional invariant. 
4
There are 3 parameters in a FGN process, namely the Hurst index, the mean and the standard deviation. 
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A crucial problem is how the three fundamental hypotheses described above can be tested 

without making additional auxiliary assumptions. In this paper we apply two types of tests. The first 

one is a particular graphical test based on the empirical characteristic function representation. The 

second one is a Chi-square test. 

 The empirical analysis is based on data from 96 weather stations and data reconstructed by 

Moberg et al. (2005a, 2006). The observed data provide convincing support of the hypothesis that 

FGN is consistent with the data. It is also striking that the Hurst index, which characterizes the auto-

correlation function, does not seem to vary very much across the observed time series from the respec-

tive weather stations. According to the graphical- and the Chi-square test the reconstructed data are 

consistent with the FGN model.  

 The paper is organized as follows: First, we discuss the key hypotheses in section 2 and sub-

sequently derive important implications in section 3. In section 4 we discuss strategies for estimation 

and testing and in section 5 we describe the data. Section 6 contains results from the estimation and 

testing. Section 7 is devoted to the analysis of the reconstructed date from the last two millennia 

(Moberg et al. 2005b).  

 

2. The hypotheses    

Let { ( ), 0}X t t²  denote the temperature process, which we view as a stochastic process in discrete 

(and sometimes continuous) time t. In this section we provide a precise formulation for our hypothe-

ses. Recall that the hypotheses are not assumptions since they will be tested. 

 

 Hypothesis 1 

 The temperature process { ( ), 0}X t t²  is stationary with finite mean. 

 

 The stationarity hypothesis is a key assumption. It is however a delicate one to test. For exam-

ple, it is known that there have been temperature cycles lasting several hundred years during the last 

2000 years, cf. Moberg et al. (2005a). This does not mean, however, that the corresponding tempera-

ture process during the last 2000 years may not be viewed as a stationary process, but it clearly indi-

cates that if so, long range dependence features might be substantial.
 
The observed data only cover  

a period of less than 300 years and the stationarity hypothesis seems to be a reasonable starting point. 

Whether or not the cycles of the temperature reconstructions obtained by Moberg et al. (2005a) are 

consistent with our hypotheses will be discussed below.  

In order to state our next assumption we need some additional notation. In discrete time, de-

fine 
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1

( ) ( ( ) ( )),
t

r

Y t X r EX r
=

= -ä  (0) 0.Y =  

The corresponding continuous time definition is similar. The reason why we introduce the aggregate 

process  { ( ), 0}Y t t²  is because it is very helpful for formulating the following hypothesis as well as 

getting an intuitive understanding of its appeal. However, this process is of no particular interest to us 

apart from its theoretical usefulness. 

 

Hypothesis 2 (continuous time version) 

 The process { ( ), 0}Y t t²  is self-similar, i.e. for any positive constant b, the process 

{ ( ), 0}Y bt t²  has the same distributional properties as the process { ( ) ( ), 0},g b Y t t²  where ( )g b  is a 

strictly increasing function in b. 

 

 An alternative way of expressing Hypothesis 2 is as follows: The joint distribution of 

1 2( ( ), ( ),..., ( ))nY bt Y bt Y bt is equal to the joint distribution of  
1 2( ( ) ( ), ( ) ( ),..., ( ) ( ))ng b Y t g b Y t g b Y t  for 

any set of time epochs 1 2( , ,..., )nt t t  and for any integer n. One way of describing the self-similar hy-

pothesis in words is that the distribution of the average temperature (normalized to have zero mean) up 

to time bt  is, apart from a change of scale, the same as the distribution of the average temperature up 

to time t. In other words, the time span over which the average is taken is not essential for the qualita-

tive properties of the probability law of the process. Thus, under self-similarity, a change of input 

scale by a factor b will leave the process invariant up to a change of ñoutputò scale by the factor g(b). 

Figure 1 below illustrates the self-similar feature. The upper part of the figure displays the annual rec-

orded temperatures for Paris. The lower part displays the temperatures over a short period, suitably 

rescaled. We note that although the two graphs are different they nevertheless appear to have some-

what similar patterns. 

The self-similarity property can in fact be justified from temporal aggregation due to a result 

proved by Lamperti (1962). We state his result in the next theorem. 

 

Theorem 1 

Assume that there exist functions 2( )g b  and 1( ),g b  where 
1( )g b ¤ as b¤ is positive 

and increasing, such that the process 1 2{ ( ) / ( ) ( ), 0}Y bt g b g b t- ²  converges weakly to a proper sto-
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chastic process { ( ), 0}Z t t²  as ,b¤  where the process { ( ), 0}Z t t² is continuous in probability.
 5
 

Then { ( ), 0}Z t t²  is self-similar. 

 

Note that it is essential that the functions 1g  and 2g  do not depend on the time index. In gen-

eral, it may not be possible to find such functions that are independent of the time index. To motivate 

Lampertiôs assumption in our context consider the following: Suppose ( )X n  is the temperature at day 

n, adjusted for seasonal variations, and let  

   
[ ]

1
( ) ( )

nt

n k
Y t X k

=
=ä  

where [x] denotes the smallest integer that is equal to or larger than x. When X(n), n=1, 2, é, are in-

dependent and identically distributed with finite variance then there exists suitable normalizing con-

stants 1( )g n  and 2( )g n  such that the process 1 2{ ( ) / ( ) ( ), 0}nY t g n g n t- >  converges weakly to a 

Brownian motion as n increases without bounds. But suppose instead that we dro the iid assumption 

and only require that 1 2{ ( ) / ( ) ( ), 0}nY t g n g n t- >  converges weakly towards a proper stochastic pro-

cess that is continuous in probability, where 1( )g n ¤ as .n¤ Let t index ñyearò. Then 365( )Y t  

will be the aggregate temperature in year t and 365 365( ( ) ( 1)) /365,Y t Y t- - t = 1, 2, é, corresponds to 

the temperature record for year t (which is the mean temperature within that year). Since 365n=  is 

ñlargeò it follows from Theorem 1 that 365 1 2{ ( ) / (365) (365), 0}Y t g g t- >  is approximately self-similar. 

If X is stationary and Gaussian it follows that 365 365{ ( ) ( 1), 1,2,..}Y t Y t t- - =  is a FGN process. 

To realize why the assumption 1( )g n ¤ as n¤ is reasonable, note that in the case where  

X  is stationary, for example, then ( )nVarY t  will increase without bounds as ,n¤ and consequent-

ly, if a normalizing sequence 1{ ( )}g n  exists it must be the case that 1( )g n ¤ as .n¤ 

 

 Hypothesis 3 

 The process { ( ), 0}X t t²  is Gaussian. 

 

 As mentioned above, it is not evident that the conditions for the central limit theorem will hold 

in this case because in the presence of long range dependence the standard mixing conditions 

(Billingsley, 1968) may not hold.  

 

                                                      

5 By a proper stochastic process we mean a stochastic process with non-degenerate finite dimensional distributions. 
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3. Key implications from the hypotheses  

We now consider some important implications from the theoretical hypotheses 1 to 3 introduced 

above. Note first that once we have derived the implications for the Y- process, the properties of the 

temperature process follows readily because 

(3.1)  ( ) ( ) ( 1)X t Y t Y tm= + - - 

where ( ).EX tm=  

  

 Proposition 1   

 The scale transformation g of a self-similar process that corresponds to a scale transfor-

mation of time must have the form ( ) Hg b b=  where H is a constant, (0,1].HÍ  

 

 A proof of Proposition 1 has been given by Lamperti (1962). 

 

 Figure 1. Illustration of statistical self-similarlty. Annual temperatures for Paris 
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In textbooks on self-similar processes the function g is usually postulated to be of the form 

given in Proposition 1 without further justification. As mentioned above, the parameter H is the so-

called Hurst index, named after the British engineer Harold Edwin Hurst (1880-1978). 

 

  

Proposition 2 

 Hypotheses 1, 2 and 3 imply that  

(3.2)  2 2 2 2( ( ), ( )) 0.5 { | | }H H HCov Y s Y t s t t ss= + - -  

and 

(3.3) 
2 2 2 2( ( ) ( ), ( ) ( )) 0.5 [(| | ) 2 | | || | | ]H H HCov Y t Y t d Y s Y s d t s d t s t s ds- - - - = - + - - + - - 

where 2 (1) (1).VarY VarXs = =  

 

 The result of Proposition 2 is well known (see for example Samorotnisky and Taqqu, 1994) 

who prove the result when d = 1. In Appendix A we give a proof for general d. Due to (3.1) the auto-

covariance function for the temperature process follows from (3.3) with d = 1. 

A Gaussian process with auto-covariance function given by (3.2) is called Fractional Browni-

an Motion (FBM). We note that when H = 0.5 it follows from (3.2) that ( ( ), ( )) min( , ),Cov Y t Y s s ts=  

which is the auto-covariance function of the Brownian Motion process. We see that the auto-

covariance function is determined by sand the Hurst index H. As also mentioned above, the stochas-

tic process { ( ) ( 1), 1}Y t Y t t- - ² is called a Fractional Gaussian Noise process (FGN). Thus, our hy-

potheses imply that the temperature process { ( ), 1}X t t²  is a FGN process. It follows from (3.3) that 

when 1/2H=  the auto-covariance of the FGN is zero. One can prove (see Samorodnitsky and Taqqu, 

1994, Proposition 7.2.10) that  

(3.4)  2 2 2( ( ), ( )) ~ (2 1) | |HCov X s X t H H t ss -- -    as   | | .t s- ¤ 

Both the FBM and the FGN have the following invariance property stated in the next proposition. 

 

Proposition 3 

 The FBM and FGN have the property that their auto-correlation functions are invariant under 

change of time unit. 

 

 The proof of Proposition 3 is given in Appendix A. 

Lampertiôs result implies that self-similar processes, and in particular FBM and FGN, have 

domains of attraction similarly to the max-stable and stable processes. Consequently, a slight 



10 

perturbation of the data will not alter the the distributional outcome in an essential way. Thus, despite 

the fact that self-similarity is an ñidealizedò property of the model the robustness feature implied by 

the existence of a domain of attraction has the consequence that even if data have slight measurement 

errors the analysis may still produce meaningful and reasonable estimates. 

Consider next weighted combinations of self-similar processes. Let 1 1 2 2V rV r V= +  where 
jV

are independent self-similar processes with Hurst index , 1,2,jH j =  and , 1,2,jr j =  are weights. Let 

1 2 1 2( , ; , )j t tj l l  be the characteristic function of 1 2( ( ), ( ))j jV t V t  and 1 2 1 2( , ; , )t tj l l  the characteristic 

function of 1 2( ( ), ( )).V t V t  If 1 2H H=  then obviously V will be self-similar. Assume next, with no loss 

of generality, that 1 2.H H> Then it follows that the characteristic function of 1 1

1 2( ( ) , ( ) )H HV bt b V bt b- -  

is equal to  

1 1 1 1

1 2 1 2 1 1 1 1 1 2 1 2( , ; , ) exp( ( ) ( ))H H H Hb b bt bt E irb V bt irb V btj l l l l- - - -= +  

  2 2

2 1 2 1 2 2 2 2exp( ( ) ( ))
H H

E ir b V bt ir b V btl l- -
Ö +  

1 2 1 2

1 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2exp( ( ) ( )) exp( ( ) ( ))H H H HE ir V t ir V t E ir b V t ir b V tl l l l- + - += + +  

2 1 2 1

1 1 1 1 2 1 2 2 2 1 2 1 2( , ; , ) ( , ; , ).H H H Hr r t t r b b t tj l l j l l- -=  

When b¤ the last expression tends towards 1 1 1 1 2 1 2 2 1 2 1 1 1 1 2 1 2( , ; , ) (0,0; , ) ( , ; , ).r r t t t t r r t tj l l j j l l=  Thus 

we have proved that 1 1

1 2( ( ) , ( ) )H HV bt b V bt b- -  is approximately distributed as 1 2( ( ), ( ))V t V t  when b is 

large. Above we have only considered the bivariate characteristic function relation. The argument in 

the corresponding multivariate case is similar. Thus, we have proved the next proposition. 

 

 Proposition 4 

 Suppose 1 1 2 2V rV r V= +  where 1r  and 2r  are constants and 1V  and 2V  are independent self-

similar processes with Hurst indexes 1H  and 2,H  respectively, with 1 2.H H²  Then  the process

1{ ( ) , 0}
H

V bt b t
-

>  converges weakly towards 1V  as .b¤ 

 

 

4.  Estimation and testing 

4.1. Method based on the characteristic function 

We shall now derive some important implications that will enable us to test the Hypotheses 1 to 3. 

Assume that the hypotheses hold and define 

(4.1)  ( ; ) exp( ( ( ) ( ) ( )) / | |)t s E i Y t Y s i t s t sj l l ml- = - + - - 
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for real l where 1.i= - The formula (4.1) is the characteristic function of the increments of 

{ ( ) ( 1), 1}Y t Y t t- - ² weighted by 1/ | |.t s-  Note first that if Z is a normally distributed random var-

iable with mean b and standard deviation s it is well known that for any real or complex c we have 

(4.2)  2 2exp( ) exp( / 2).E cZ b cs= +  

Under Hypothesis 1 to 3 it follows immediately by using (4.2) that  

(4.3)  ( ; ) exp( (| |) / | | ( ) / | |)t s E i Y t s t s i t s t sj l l lm- = - - + - -    

    0.5exp( | | (1) ( ) / | |)HE i t s Y i t s t sl lm-= - + - - 

       2 2 1 2exp( 0.5 | | ( ) / | |)Ht s i t s t ss l lm-= - - + - - 

From (4.3) it follows that  

(4.4)  
2 2 1 2| ( ; ) | exp( 0.5 | | ).Ht s t sj l s l-- = - -   

Eq. (4.4) is equivalent to 

(4.5)  
2log( log | ( ; ) |) (2 1)log | | 2log | | log(0.5 ).t s H t sj l l s- - = - - + +  

We notice that the right hand side of (4.5) is linear in log | |t s-  and log | | .l  Thus, the relation in 

(4.5) enables us to carry out estimation and non-parametric graphical testing of the hypotheses  

provided one is able to obtain a non-parametric estimate of the characteristic function ( ; ).t sj l-  This 

is indeed possible as we shall now demonstrate.  

Define the corresponding empirical counterpart of the characteristic function in (4.5) by 

(4.6)     
| |

1

1
Ĕ( ; ) exp( ( (| | ) ( )) / | |)).

| |

T t s

k

t s i Y t s k Y k t s
T t s

j l l
- -

=

- = - + - -
- -

ä  

Clearly, under Hypothesis 1 it follows that 

 
| |

1

1
Ĕ( ; ) exp( ( (| | ) ( )) / | |) ( ; )

| |

T t s

k

E t s E i Y t s k Y k t s t s
T t s

j l l j l
- -

=

- = - + - - = -
- -

ä  

which means that the empirical characteristic function defined in (4.6) is an unbiased estimator of the 

corresponding theoretical characteristic function. From (4.6) it follows readily that 

(4.7)     
1/ 2Ĕ Ĕ Ĕ| ( ; ) | ( ( ; ) ( ; ))t s t s t sj l j l j l- = - - -     

1/ 2
| | | |

1 1

1
cos( ( (| | ) ( ) (| | ) ( )) / | |)

( | |)

T t s T t s

k r

Y t s k Y k Y t s r Y r t s
T t s

l
- - - -

= =

å õ
= - + - - - + + -æ ö
- - ç ÷

ä ä . 

Recall that the calculation of the statistics Ĕ( ; )t sj l-  is not dependent on whether or not the Hypothe-

ses 1 to 3 hold. As we shall see below, the results above can be used to carry out graphical tests of 

Hypotheses 1 to 3. From (4.5) it follows that that under Hypotheses 1 to 3 

(4.8)         
2Ĕlog( log | ( ; ) |) (2 1)log | | 2log | | log(0.5 ) ( , )t s H t s s tj l l s e- - = - - + + + 
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where ( , )s te  is an error term that is small when the number of observations is large. From (4.8) we 

see that H and s can be estimated by regression analysis by treating log | |t s-  as the independent 

variable with suitable values of t s-  while keeping l fixed. The slope in this linear regression has the 

interpretation as 2 1H-and the intercept has the interpretation as 
22log | | log(0.5 ).l s+   

If we replace Hypothesis 3 with the Hypothesis that the temperature process is a stable process 

one can show (together with Hypotheses 1 and 2) that 

(4.9)        Ĕlog( log | ( ; ) |) ( 0.5)log | | log | | log( ) ( , )t s H t s s taj l a a l t e- - = - - + + + 

where tis the scale parameter and (0,2]aÍ  is the parameter representing the tail thickness. Thus, in 

the case where the aggregate temperature process Y  has stationary stable increments then 

Ĕlog( log | ( ; ) |)t sj l- -  will be approximately linear in log | | .l  If, moreover, the Y process is a self-

similar process with stationary stable increments then Ĕlog( log | ( ; ) |)t sj l- -  will be approximately 

linear in log | | .t s-   

Equation (4.9) can thus be applied to test the normality hypothesis, or more generally if the 

temperatures are generated by a stable distribution. If the increments of Y  are not stationary, 

Ĕlog( log | ( ; ) |)t sj l- - will in general not be linear in log | |t s-  and log | |l even if the increments are 

stable. It remains, however, an open question which and how large the departures from stationarity 

must be in order to be detected by our graphical method.  

The estimation method based on the empirical characteristic function in (4.8) was suggested by Kout-

rouvelis (1980), see also Koutrouvelis and Bauer (1982) and Kogon and Williams (1998).  

 Recall that even if all one dimensional marginal distributions are normal it does not necessari-

ly follow that the corresponding joint distribution is multivariate normal. The tests based on the empir-

ical characteristic function discussed above can be extended to test whether or not the joint distribution 

of the temperatures at several points in time is multinormal.  

 One can also use the characteristic function techniques to obtain an estimator for the mean .m 

Let 

(4.10)  ( ) sin( ( ))S E X tl l=    and     ( ) cos( ( )).C E X tl l=  

Since  

 2 2 2( ) ( ) exp( ( )) exp( 0.5 ) exp( 0.5 )(cos( ) sin( ))C iS E i X t i il l l l lm s l ml ml+ = = - + = - +  

it follows that  

  2 2( ) exp( 0.5 )cos( )C l s l ml= -    and    2 2( ) exp( 0.5 )sin( )Sl s l ml= -  

which yield 
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(4.11)  
( )

.
( )

S
Arctg

C

l
lm

l

å õ
=æ ö

ç ÷
 

Thus, an estimator of m can be obtained as follows (Koutrouvelis, 1980). Let 

  
1

1Ĕ( ) sin( ( ))
T

k

S X k
T

l l
=

= ä    and    
1

1Ĕ( ) cos( ( )).
T

k

C X k
T

l l
=

= ä  

Evidently, Ĕ( )Sl  and Ĕ( )C l  are consistent estimators for ( )Sl  and ( ).C l  Hence, for suitable choice of 

,l (4.11) implies that 

(4.12)  
Ĕ1 ( )

Ĕ
Ĕ( )

S
Arctg

C

l
m
l l

å õ
= æ öæ ö

ç ÷
 

is a consistent estimator for .m  

We have conducted a series of bootstrapping simulations in order to check whether or not the 

distributions of the estimates ĔĔ,H s and Ĕm obtained by the characteristic function procedure are as-

ymptotically normal. To test the hypothesis of asymptotic normality we have computed corresponding 

QQ plots which are obtained by bootstrapping based on 1000 simulated time series with length 1000, 

see Appendix D, Figure D2. These figures clearly indicate that the estimates are normally distributed. 

The corresponding bootstrap standard errors are given by ĔVarH =0.0167, ĔVars=0.0114 and 

Ĕ 0.00Varm= 21. 

 

4.2. Maximum likelihood estimation and the Whittle estimator 

Under the assumption that the temperature series is a Gaussian process one can also apply the method 

of maximum likelihood. In particular, if Hypotheses 1 to 3 hold then the auto-covariance function will 

only depend on two parameters, namely H and .s For notational convenience let ( )HW  be the matrix 

with elements  

  
2 2 2( ) 0.5(| | 1) 2 | | || | 1| ).H H H

st H t s t s t sW = - + - - + - - 

Furthermore, let  

( (1), (2),..., ( ))T X X X T ¡=X  and 1 = (1,1,é,1)¡.  

Then the covariance matrix of TX can be expressed as 
2 ( ).HsW  The loglikelihood function can be 

written (apart from an additive constant) 

(4.14)      log ( , , )L Hms =-( TX -1
1) ( )(Hm -¡W

TX -1
2 2) / 2 0.5 log( ) 0.5log | det ( ) |T Hm s s- - W  

where ( ).EX tm=  
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 In the case where T is large it may be complicated to compute the likelihood function. Howev-

er, Whittle has demonstrated (see Beran, 1994) that the likelihood can be approximated. This approx-

imate likelihood converges to the exact likelihood as T increases without bounds.  

Given H it follows readily from (4.4) that the corresponding conditional maximum likelihood 

estimates of m and  are given by  

(4.15)    

and 

(4.16)   2 2

1

1
Ĕ Ĕ( ( ) ) .

T

r

X r
T

s m
=

= -ä  

 

 

4.3. Estimation of the autocorrelation function 

In the presence of long range dependence the usual estimator for the autocorrelation function may be 

seriously biased even if long time series data are available. Let 
kr  be the usual estimator for the auto-

correlation 
kr as given by 

(4.17)  1

2

1

( ( ) )( ( ) )

( ( ) )

T k

T Tt
k T

Tt

X t k X X t X
r

X t X

-

=

=

+ - -
=

-

ä

ä
 

where TX is the sample mean. Under the condition ,k k gr l-  where 0 1/ 2,g< < Hoskings (1996) 

has obtained that 

(4.18)  
2

2(1 )
.

(1 )(2 )

k
k kEr

Tg
r l

r
g g s

- -
-

- -
 

In our setting it follows from (3.4) that Hoskingôs condition given above is satisfied and that 

2 (2 1)H Hl s= - and 2 2 .Hg= -  Hence, by inserting these values into (4.18) we obtain that 

(4.19)  
2 2

1
.k

k k H
Er

T

r
r

-

-
-  

The expression in (4.19) can be applied to obtain an asymptotic unbiased estimator for .kr  Let  

(4.20)  
2 2

2 2
Ĕ .

1

H

k
k H

r T

T
r

-

-

+
=
+

 

Then it follows from (4.19) that Ĕ ,k kEr r which means that Ĕkr  is an unbiased estimator (asymptoti-

cally) for .kr  
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1 1
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4.4. Chi-square test 

There are several tests available in the literature. One possibility is the Box Pierce ï or a Ljung Box 

test. However, according to Chen and Dao (2004) the distributions of these tests are not known when 

the model exhibit long range dependence. We have chosen to use a Chi-square test whether the data 

are consistent with FGN. Let ( )Z t  denote the normalized temperature at time (month) t and  

( ( ), (2),..., (1)) .TZ Z T Z Z ¡=  Define 

(4.21)  
1( )

( ) .
2

T T
T

Z H Z T
Q H

T

-¡W -
=  

Under the FGN hypothesis ( )TQ H  is asymptotically normally distributed with zero mean and unit 

variance. The Chi-square test we have applied is based on the statistic ( )TQ H  given in (4.21).  

 

 

5. Data 

Data on observed temperatures were collected by Hov Moen from different sources (Hov Moen, 

2015). These sources are NASA GISS (NASA Goddard Institute for Space Studies), ECA&D (Euro-

pean Climate Accessment & Data), and the respective national meteorological institutes, such as 

SMHI (Swedish Meteorological and Hydrological Institute) and MET Norway (Norwegian Meteoro-

logical Institute). The data, certified by NASA, comprise time series of temperatures for 1258 weather 

stations from more than 100 countries. The time series are available as yearly, monthly and daily fig-

ures. The lengths of the time series vary greatly across stations. Some stations, such as Uppsala, con-

tain data for 290 years, with more or less monthly data from 1722 until 2012. Other series are shorter 

than two decades. Some of the time series have several periods of missing data. After a number of 

selection procedures we ended up with 96 time series from 32 countries. The series that were removed 

were either too short or contained ñtoo manyò missing observations. Details of the selection procedure 

are given in a supplement section, see Fortuna (2015). 

Appendix C contains plots of the temperature data for 9 selected time series as well as sum-

mary information for the 96 cities. The 9 cities have been selected because they have among the best 

and longest temperature series. We have used annual data as well as monthly data adjusted for season-

ality. Seasonally adjusted temperatures are computed by subtracting the respective monthly means and 

dividing by the respective monthly standard deviations.  

From the figures we see that the data exhibit local trends and cycles. Consider the data for 

Berlin for example. From about 1750 until about 1830 there seems to be a downward trend, whereas 

from about 1840 to about 1870 there is a slight upward trend. Another, and perhaps more dramatic 
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picture, appears for Geneva. From about 1920 there seems to be an increasing trend until about 1950, 

followed by a steep decreasing trend until about 1965. From about 1965 there is again an increasing 

trend. Also the plots of the temperature series for Alexandria, Buenos Aires, Paris, Milan and Reykja-

vik, show strong cycles and local trends. It is likely that there are measurement errors in these temper-

ature series. Some errors are due to the location of the measurement sites which initially often where 

located in central urban areas. For example, the thermometer used for temperature recordings in New 

York City was located in Central Park and only recently moved outside the city. It has been docu-

mented that the temperature has a tendency to increase with increasing urbanisation. There may also 

have been varying quality over time of the thermometers used. 

We also analyze the data obtained by Moberg et al. (2005a, 2006). They have reconstructed 

temperatures for the northern hemisphere from the first year AD until 1979 by using data from tree 

rings and lake sediments, see Moberg et al. (2005a,b) for a detailed discussion and description of their 

data. See also the discussion by Moberg (2012). These data show considerable variation over time. In 

these data there are several cycles with a high swing occurring from AD 1000 to 1100 and a low swing 

occurring during AD 1500 and 1600, see Figure 4.  

 

6. Inference results 

6.1. Results from maximum likelihood estimation and the characteristic function 

procedure  

 
We only report detailed results for 9 selected cities among the best and longest time series in the pa-

per. The estimates for the remaining stations are given in Appendix D. When the time series is a 

Gaussian process the likelihood function is fully identified by the auto-covariance function. Since the 

autocorrelation function (determined by H) is invariant under choice of time unit parameter estimates 

obtain on the basis of monthly data correspond to parameters for the model with year as time unit. In 

Table 1 we have displayed parameter estimates of ,ms and H based on the characteristic function 

( , , )C C CHm s  and the Whittle method ( ).WH  A striking feature of these estimates is that the Hurst 

index does not vary much across weather stations. In fact, the differences between the estimates of H 

are hardly significant. Note that in contrast to the characteristic function method the Whittle estimates 

 

Table 1. Estimation results for selected cities based on characteristic function regression and 

Whittl e methods. Monthly data 
City 

Cm                            Cs    
CH   

WH   

Germany, Berlin 9.158 (0.073) 1.466 (0.032) 0.664 (0.019) 0.662 (0.012) 

Switzerland, Geneva 10.023 (0.086) 1.265 (0.029) 0.693 (0.019) 0.667 (0.012) 
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Switzerland, Basel 9.560 (0.054) 1.279 (0.030) 0.625 (0.018) 0.622 (0.012) 

France, Paris 11.015 (0.104) 1.422 (0.032) 0.733 (0.020) 0.672 (0.012) 

Sweden, Stockholm 5.690 (0.093) 1.357 (0.031) 0.681 (0.019) 0.721 (0.012) 

Italy, Milan 13.258 (0.106) 1.184 (0.027) 0.724 (0.019) 0.709 (0.012) 

Czech Republic, Prague 9.580 (0.084) 1.475 (0.031) 0.684 (0.019) 0.670 (0.012) 

Hungary, Budapest 10.216 (0.057) 1.332 (0.030) 0.627 (0.019) 0.645 (0.012) 

Denmark, Copenhagen 8.031 (0.139) 1.225 (0.033) 0.755 (0.020) 0.758 (0.013) 

Standard errors are in parentheses 

 

for H are based on the normalized time series. Thus, the Whittle estimates depend on the estimates of 

the respective estimated means and standard deviations that are used to normalize the series.   

The estimates are quite precise due to the fact that we use monthly data and therefore have 

long time series. We note that the maximum likelihood estimates and the estimated obtained by the 

characteristic function regression procedure are quite similar. Our stationary hypothesis also includes 

the hypothesis that the seasonal variation process is stationary. Since our method for seasonal adjust-

ment is somewhat crude, this may introduce additional ñnoiseò in the data and one might expect that 

estimates based on annual data yield higher estimates for H. Table D2 in Appendix D also contains 

Table 2. Bias and standard deviation of the characteristic function regression and Whittle esti-

mator for H. Bootstrap simulations 

H 
CH   

WH   

0.7 0.689 (0.020) 0.695 (0.015) 

0.8 0.781 (0.022) 0.796 (0.015) 

0.9 0.860 (0.023) 0.897 (0.015) 

0.95 0.894 (0.025) 0.945 (0.014) 

Number of simulations; N = 1000. Length of time series; T = 2000. Standard errors in parentheses 

   

estimates (Whittle estimates) based on annual data. We note that the estimates of H based on annual 

data often are significantly higher that the estimates based on monthly data.  

 

       Table 3. Properties of different estimators of FGN. Bootstrap simulations 

 

 H = 0.7 H = 0.8 H = 0.9 H = 0.95 

    MLm  ( CH )  0.000 -0.005   0.006 0.008 

    MLs  ( CH )  0.996  0.987   0.957 0.937 

    MLm  ( WH )  0.000 -0.005   0.006 0.009 
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MLs  (

WH )  0.995  0.987   0.958 0.938 

    
Cm    (

CH )  0.001 -0.005   0.008 0.006 

    
Cs    (

CH )  0.996  0.989   0.959 0.938 

  SD 
MLm  (

CH )  0.038  0.156   0.266 0.346 

  SD  
MLs  (

WH )  0.019  0.031   0.057 0.080 

  SD 
MLm   (

WH )  0.089  0.156   0.266 0.346 

  SD  
MLs  (

WH )  0.019  0.031   0.057 0.080 

  SD  
Cm    (

CH )  0.090  0.162   0.280 0.357 

  SD   
Cs   (

CH )  0.023  0.028   0.053 0.075 

       Number of simulations; N = 1000. Length of time series; T = 2000 

 

In Tables 2 and 3 we report results from bootstrap simulations of properties of different esti-

mators. The data are simulated from a FGN process with zero mean and unit variance, and with 4 dif-

ferent values of H. From Table 2 we note that the characteristic function regression estimator seems to 

be downward biased when H is greater than 0.8, whereas the Whittle estimator appears to be unbiased 

even for H = 0.95. Table 3 shows bootstrap simulation results for the mean and standard deviation of 

different estimators for m and s when H is estimated by the characteristic function regression meth-

od and the Whittle method. Here, ñ
MLs (

CH )ò and ñ
MLs (

WH )ò means that H is estimated by the 

characteristic function regression method and the Whittle maximum likelihood method, respectively, 

whereas s is estimated by the maximum likelihood method, conditional on the estimated value of H. 

We note that for values of H greater than 0.8 all the estimators seem to underestimate .s 

 Consider next tests for the Hypotheses 1 and 3. Traditional tests for normality depend on data 

being independent and identically distributed. However, time series data are typically correlated, 

which implies that such tests will not apply.
6
 The characteristic function approach outlined above does 

not require independence. Thus, under the Hypotheses 1 and 3 it follows from (4.8) that if one selects 

suitable values  and plots the left hand side of (4.8) against the plot will be linear with 

slope close to 2 if the temperatures are normally distributed. In Figure 2 we have displayed corre-

sponding plots for selected cities. From Figure 2 we see that the plots are almost perfectly linear with 

most slopes between 1.99 and 2.01. In two cases (Basel and Milan) the plots are linear with slopes 

equal to 1.96, which indicate a stable distribution (which has slightly heavier tails than a normal distri-

bution). More results are given in Appendix D. The total set of results for all 96 cities are given in 

Fortuna (2015). In order to check whether the characteristic function regression estimation method is 

                                                      

6 See Beran and Ghosh (1991) for another test of normality in time series with long range dependence. 

{ }jl {log }jl
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unbiased we have conducted bootstrap simulations. The results are given in Table 4, which clearly 

indicate that the method yields unbiased results. Standard errors are obtained by 1000 bootstrap simu-

lations. Recall that when 2a=  the Gaussian hypothesis is satisfied.  

As discussed above, the characteristic function regression approach can also be applied for 

testing Hypotheses 1 and 2. We have plotted the left hand side of (4.8) for t = 1, 2, é10, against 

log | | .t s-  The resulting plots are displayed in Figure 2 for the selected cities. Additional results are 

given in Appendix D. The complete set of results are given in Fortuna (2015). We note that in most 

cases the plots are almost perfectly linear. In 4 cases the plots differ substantially from linearity and in 

a few other cases the plots are only approximately linear (Sulina, Sort, Plymouth, Jacksonville). We 

have subsequently applied a Chi-square test method to test if FGN is consistent with the temperature 

data. Recall that when H is known the test statistics (Q) follows a standard normal distribution which 

implies that the corresponding 5 per cent confidence interval is equal to ( 1.96,1.96).-  In Table 5 we  

   

       Table 4. Properties of the characteristic function regression estimation method 

City a SD 

Germany, Berlin 2.0003 (0.0054) 

Switzerland, Geneva 2.0004 (0.0056) 

Switzerland, Basel 2.0001 (0.0050) 

France, Paris 2.0002 (0.0060) 

Sweden, Stockholm 2.0005 (0.0053) 

Italy, Milan 2.0003 (0.0059) 

Czech Republic, Prague 2.0002 (0.0057) 

Hungary, Budapest 2.0001 (0.0050) 

Denmark, Copenhagen 2.0006 (0.0063) 

        

      Table 5. Chi-square statistics of the FGN hypothesis for selected cities 

City 
KH  WH     ( )CQ H    ( )WQ H  

Czech Republic, Prague 0.684 0.670 -0.050 -0.710 

Denmark, Copenhagen 0.755 0.758 -0.857 -0.542 

France, Paris 0.733 0.672  1.432 -2.659 

Germany, Berlin 0.664 0.662 -0.379 -0.488 

Hungary, Budapest 0.627 0.645 -0.674 -0.107 
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Italy, Milan 0.724 0.709 -1.200 -2.200 

Sweden, Stockholm 0.681 0.721 -1.071  1.245 

Switzerland, Basel 0.625 0.622 -0.268 -0.343 

Switzerland, Geneva 0.693 0.667 -0.082 -1.487 

   

have reported results for selected cities. Only in 2 cases (Buenos Aires, Argentina and Cap Otway, 

Australia) out of the 96 series are the models estimated by the characteristic function regression esti-

mates found to be inconsistent with FGN, whereas in 8 cases the models estimated by the Whittle 

maximum likelihood method are found to be inconsistent with FGN. For Buenos Aires the characteris-

tic function regression and Whittle estimates are 0.79 and 0.71. When we instead apply H = 0.76 the 

corresponding value of Q (Buenos Aires) becomes 0.1011,- which means that the model passes the 

test. For Cap Otway the characteristic function regression and Whittle estimates are 0.80 and 0.71, 

respectively. When we apply H = 0.78 the corresponding Q becomes 0.2462, which shows that the 

model passes the Chi-square test also in this case. The results above indicate that the characteristic 

function regression approach may perhaps be more robust than the Whittle maximum likelihood 

method as regards departure from the FGN hypothesis. We have also applied the Chi-square test in the 

case with annual data. In this case we obtain that the model is rejected (using characteristic function 

estimates) in 10 cases (out of 96 series). Note, however, that the Chi-square test we have applied so far 

is a conditional test, based on the assumption that the parameter H is known. When H is replaced by 

its corresponding estimate, then it is not known what the corresponding unconditional distribution of 

Q  is. To this end, we have conducted a series of simulation experiments that show than when H is 

estimated by the Whittle method then the distribution of Q  is stable with zero mean, maximally skew 

to the right with 1.99a=  when H = 0.7 and H = 0.8, and 1.96a=  when H = 0.9. The corresponding 

95 per cent confidence intervals are ( 2.415,2.415),- ( 3.560,3.560)-  and ( 5.169,11.576).-  In Figure 

D1 in Appendix D we report graphical tests for the hypothesis that the unconditional distribution of Q  

is stable, based on the characteristic function approach discussed above. From Figure D1 we see that 

the graphical tests indeed support the hypothesis that Q  is stable. It follows that when we compute 

confidence intervals based on the unconditional (stable) distribution of Q  then the model is not reject-

ed in any case. 

When looking at some of the temperature graphs it may seem puzzling that the stationarity 

hypothesis is not rejected. For example, the temperature series of Buenos Aires show a positive trend 

from about 1910 until 2006 and the temperature series of Milan show a positive trend from about 1860 
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to 2009. The explanation is that, in the presence of long range dependence, such patterns are indeed 

possible.  

To illustrate this we have simulated FGN processes for different values of H, see Figure 3. Re-

call first that since the autocorrelation function of FGN is invariant under choice of time unit, the time 

unit in Figure 3 may be one year, 10 year or 100 years. However, the corresponding amplitudes will be 

affected by a change of time unit. If, for example, the time unit is changed from ñyearò to ñ10 yearsò 

the corresponding standard deviation is found by dividing the standard deviation based on annual data 

by 110 H- . Recall also that most of the estimates of H based on annual data have order of magnitudes in 

the interval (0.7, 0.9). With H = 0.7 we note that from about 625 to about 720 time units there seems to 

be a decreasing trend, whereas from about 260 to about 330 time units there is an increasing trend. 

When H = 0.8 and 0.9 this type of patterns seem to be more pronounced. In these cases we note that 

the local trends may be several hundred time units long. To simulate FGN processes we have used the 

Cholesky method to decompose the autocorrelation matrix in order to obtain the corresponding mov-

ing average representation of the process from which one can simulate the process using iid normal 

draws.  

In order to investigate to which extent it is possible to detect departure from stationarity given 

that the ñcoreò stationary process is FGN, we have conducted the following simulation experiment. 

We have simulated 180 years of the following process: During the first 120 years the process is as-

sumed to be FGN with zero mean and unit variance. The last 60 years the process is assumed to be 

FGN plus a linear trend with positive slope, starting at zero in year 120. We used the Chi-square test to 

see how steep the trend has to be before the FGN hypothesis is rejected. It turns out that the trend has 

to be equivalent to at least an increase of about 1.8 degrees (Celsius) in 50 years before departure from 

stationarity can be discovered, when H = 0.7. When H is greater than 0.7 the slope had to be even 

steeper in order to be detected by our test. The reason is that when H increases the FGN exhibits in-

creasingly complex patterns with pronounced stochastic trends and cycles.  
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Figure 2. Graphical tests of self-similarity and normality 
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Figure 3. Simulated FGN process with zero mean and unit variance 
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7. Analysis based on two millennia temperature reconstructions 

As mentioned above, the data obtained by Moberg et al. (2005b) are reconstructed data and it is there-

fore not evident at all that the FGN would be a suitable model in this case. Figure 4 displays the recon-

structed temperatures from the first year AD to 1979. The reconstructed data indicate that the 16
th
 and 

the 17
th
 centuries were much colder that the late middle age and the recent centuries. We have applied 

the characteristic function regression approach and the Whittle maximum likelihood estimation proce-

dure, as well as the graphical and Chi-square testing procedures, similarly to the case with the ob-

served temperature series. Both the plots of the normality test and the plots of the self-similarity test 

are close to being perfectly linear, thus consistent with the FGN hypothesis, see Figure 5.  We note 

that the autocorrelation function decreases very slowly, see Figure 6. The estimate of H by the charac-

teristic function regression method is Ĕ 0.917.H =  From Table 2 we note that the characteristic function 

regression estimator underestimates H when H is higher than 0.8. The estimate based on the Whittle 

method yields Ĕ 0.990H =  with standard deviation 0.015. The usual empirical estimates for m and s 

are given by Ĕ 0.345m=- and Ĕ 0.220.s=  The maximum likelihood method (conditional on H) and the 

characteristic function regression method yield almost the same estimates of m and ,s  and the corre-

sponding standard deviations are 0.38 and 0.08, respectively. By using the unconditional Chi-square 

test procedure we find, however, that both the characteristic function regression and the Whittle esti-

mates imply that the FGN hypothesis is not rejected. It turns out that the Chi-square test depends 

strongly on the level of H. When computing Q for H = 0.94, 0.95 and 0.96, respectively, we obtain the 

values -5.27, -0.94 and 5.60, which shows that when H = 0.95 the corresponding absolute value of  Q 

is close to its 

     

     Figure 4. Reconstructed temperature data by Moberg et al. (2005)  
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      Figure 5. Tests of self-similarity and normality  

 

     Self-similarity test     Normality test.  

     Estimated H by regression is 0.92   Estimated alfa is 1.98 

              

  
 

 

     Figure 6. Empirial and theoretical autocorrelation plots 

 

 

minimum. Recall that the Whittle maximum likelihood method may not be robust against the depar-

tures from the FGN assumption. We see from Figure 4 below that when H = 0.95 the FGN model  

underpredicts the first order autocorrelation but yields close predictions for the other lags. The reason 

why the first order empirical autocorrelation is high may be due to the fact that the reconstructed data 

rely heavily on particular smoothing procedures (Moberg et al. 2005a). Thus, the estimate Ĕ 0.95H=  

may therefore be the better estimate.  

 Mills (2007) has also analyzed the data set obtained by Moberg et al. (2005). Similarly to our 

analysis, he found that these data are consistent with long memory characteristics and can be repre-

sented by an autoregressive fractionally integrated moving average process that is both stationary and 

mean reverting. He also showed that if one allows for a smoothly varying underlying trend function, 
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then long memory disappears, implying that recent centuries have been characterized by trend temper-

atures trending upwards. Thus, his analysis provides another example of the difficulty of discriminat-

ing between competing models by statistical arguments alone, see Mills (2010). 

 

8. Concluding remarks 

The purpose of this research has been to establish a stochastic model that is able to represent the tem-

perature dynamics reasonably well. We have resorted to an empirical strategy which depends on par-

ticular invariance hypotheses that imply the FGN model. One of these hypothesis, namely self-

similarity, can be motivated on theoretical grounds because data are temporal aggregates. Thus, in 

contrast to traditional statistical approaches, our model can in part be given a theoretical justification. 

The FGN model is simple in the sense that it only depends on 3 parameters, namely parame-

ters representing the mean, variance and temporal dependence, respectively. Thus, in contrast to typi-

cal models based on ARIMA, or similar formulations, only one parameter represents the temporal 

dependence, and the model therefore yields rather strong restrictions on data. We have used nonpara-

metric graphical techniques based on the empirical characteristic function to test the FGN model. Al-

so, we have applied a Chi-square test to this end. Most of the test results indicate that our hypotheses 

are consistent with the temperature data. In other words, the empirical analysis based on the observed 

and reconstructed temperatures indicate that the data are consistent with the FGN model. In this re-

spect, our analysis is analogous to Mills (2010) who also finds that temperature data are consistent 

with a stationary model formulation.  

 Due to self-similarity, the autocorrelation function of the FGN process is independent of the 

time unit the temperature is measured in. Thus, a change of unit will only affect the amplitude. As a 

result, the temperature variations will contain ñwaves within wavesò, where the long waves will have 

smaller amplitudes than the short waves.  

Since our model is extremely restrictive and is still able to pass our tests it indicates that the 

FGN model gives a pretty good representation of the underlying temperature dynamics.  

Finally, we have conducted a simulation experiment based on a modification of the FGN 

model allowing for a linear trend with positive slope during the last 60 years. It turns out that the trend 

has to be substantially higher than the corresponding observed trends before departure from stationari-

ty can be discovered by means of our tests. Thus, using only information from temperature data alone 

it seems difficult to reveal if any systematic change has taken place during the last 60 years (say), as a 

result of increased levels of greenhouse gases. 
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Appendix A 
Proof of Proposition 2: 

For s < t, we obtain that 

(A.1) 
2 2 2( ( ), ( )) ( ( ) ( )) 0.5 { ( ) ( ) ( ( ) ( )) }Cov Y s Y t E Y s Y t E Y s Y t Y s Y t= = + - -

 2 2 2 2 2 20.5{ ( ) ( ) ( ( ) ( )) } 0.5{ ( ) ( ) ( (0) ( )) }EY s EY t E Y s Y t EY s EY t E Y Y t s= + - - = + - - - 

 
2 2 2 2 2 2 2 2 20.5{ ( ) ( ) ( ) } 0.5{ (1) (1) ( ) (1) }H H HEY s EY t EY t s s EY t EY t s EY= + - - = + - -  

 
2 2 2 20.5 { ( ) }H H Hs t t ss= + - -  

where 2 (1) ( (1).VarY Var Xs = =  From (A.1) we can now readily obtain the auto-covariance function 

for the temperature process { ( ), 0},X t T t² ²  because, for ,s t<   

(A.2) ( ( ), ( )) ( (1), ( 1)) ( (1), ( 1) ( ))Cov X s X t Cov X X t s Cov Y Y t s Y t s= - + = - + - - 

 
2 2 2 2(1) ( 1) (1) ( ) 0.5 [( 1) 2( ) ( 1) ].H H HEY Y t s EY Y t s t s t s t ss= - + - - = - + - - + - - 

The formula in (A.2) will also hold in the general case for any s and t after a slight modification, and 

the resulting formula in the general case is; 

 
2 2 2 2(1) ( 1) (1) ( ) 0.5 [(| | 1) 2 | | || | 1| ].H H HEY Y t s EY Y t s t s t s t ss- + - - = - + - - + - - 

This completes the proof. 

Proof of Proposition 3: 

Consider a FBM { ( ), 0},Y bt t²  where b is a positive constant, and t is measured in years. Thus, if for 

example b = 10, the time unit of the process is 10 year. By the self-similar property it follows that 

 2( ( ), ( )) ( ( ), ( )) ( ( ), ( ))H H HCov Y bt Y bs Cov b Y t b Y s b Cov Y t Y s= =  

and  

2( ) ( ).HVarY bt b VarY t=   

Hence, 

 ( ( ), ( )) ( ( ), ( )) / ( ) ( )Corr Y bt Y bs Cov Y bt Y bs VarY bt VarY bs=  

 ( ( ), ( )) / ( ) ( )Cov Y t Y s VarY t VarY s=  

which proves the assertion for FBM. Consider next the FGN. Similarly to the case above, 

 ( ( ) ( ( 1)), ( ) ( ( 1))) ( ( ) ( 1), ( ) ( 1))H H H HCov Y bt Y b t Y bs Y b s Cov b Y t b Y t b Y s b Y s- - - - = - - - - 

 2 ( ( ) ( 1), ( ) ( 1))Hb Cov Y t Y t Y s Y s- - - - 

and 

 2( ( ) ( ( 1))) ( ( ) ( 1)) ( ( ) ( 1)).H H HVar Y bt Y b t Var b Y t b Y t b Var Y t Y t- - = - - = - - 

From these relations the invariance result for FGN follows. This completes the proof. 
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 Appendix C 

          Annual temperature figures and summary data information   

            Figure D1. Plots of temperature series for 9 selected cities 

 



34 

 

 



35 

 

 



36 

Table C1. Summary information about data 

Weather station First recor-
ded year 

Last recor-
ded year 

Years Missing 
years 

Non missing 
months 

Argentina, Buenos Aires 1856 2006 151 1 1781 

Australia, Adelaide 1881 2012 132 2 1567 

Australia, Alice Springs 1881 2012 132 2 1564 

Australia, Cap Otway 1865 2012 148 18 1731 

Austria, Kremsmunster 1876 2009 134 2 1601 

Austria, Vienna 1855 2009 155 10 1829 

Belgium, Uccle 1833 2008 176 1 2108 

Canada, Winnipeg 1881 2012 132 3 1575 

Croatia, Zagreb 1861 2008 148 1 1765 

Czech Republic, Prague 1775 2005 231 1 2764 

Denmark, Copenhagen 1798 2011 214 0 2568 

Denmark, Vestervig 1875 2012 138 1 1648 

Egypt, Alexandria 1870 1990 121 10 1395 

France, Nantes 1851 2009 159 1 1893 

France, Paris 1757 2009 253 1 3030 

Germany, Berlin 1756 2012 257 1 3083 

Germany, Hohenpeissenberg 1781 2012 232 1 2782 

Germany, Karlsruhe 1876 2008 133 3 1586 

Greece, Athens 1858 2009 152 1 1814 

Greenland, Illulisat 1873 2012 140 2 1674 

Greenland, Ivittuut 1873 1960 88 0 1056 

Hungary, Budapest 1780 2009 230 2 2753 

Iceland, Djupivogur 1873 2009 137 4 1635 

Iceland, Reykjavik 1870 2012 143 1 1711 

India, Agra 1881 1987 107 3 1269 

India, Allahabad 1881 2012 132 5 1517 

India, Bombay 1881 2012 132 1 1569 

India, Indore 1881 2012 132 1 1569 

India, Madras 1881 2012 132 1 1569 

India, Nagpur 1881 2011 131 1 1565 

Israel, Jerusalem 1861 2004 144 13 1660 

Italy, Bologna 1814 2009 196 3 2334 

Italy, Milan 1763 2009 247 3 2943 

Japan, Hiroshima 1881 2005 125 0 1489 

Japan, Nagasaki 1881 2012 132 1 1582 

Japan, Tokyo 1876 2012 137 1 1642 

Kazakhstan, Kazalinsk 1881 1990 110 1 1307 

Luxembourg, Luxembourg 1838 2008 171 2 2036 

New Zealand, Wellington 1864 1989 126 1 1503 

Norway, Andøya 1868 2012 145 1 1739 

Norway, Bergen 1858 2012 155 0 1860 

Norway, Bodø 1868 2012 145 0 1740 

Norway, Dombås 1865 2012 148 1 1773 

Norway, Karasjok 1876 2012 137 0 1644 

Norway, Mandal 1861 2008 148 2 1760 

Norway, Oksøy Lighthouse 1870 2012 143 0 1716 

Norway, Ona 1868 2012 145 6 1717 

Norway, Oslo 1816 2012 196 0 2364 
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Norway, Røros 1871 2012 142 0 1704 

Norway, Tromsø 1868 2012 145 0 1740 

Norway, Utsira 1868 2012 145 0 1740 

Norway, Vardø 1858 2008 151 1 1809 

Pakistan, Lahore 1876 2012 137 1 1631 

Portugal, Lisbon 1881 2009 129 0 1539 

Romania, Sulina 1881 2009 129 1 1530 

Russia, Archangelsk 1881 2012 132 1 1580 

Russia, Sort 1881 1990 110 3 1294 

Russia, St Petersburg 1881 2009 129 1 1543 

Spain, Gibraltar 1852 2010 159 13 1850 

Sweden, Bromma 1756 2011 256 1 3067 

Sweden, Stockholm 1756 2004 249 0 2988 

Sweden, Tullinge 1756 2011 256 3 3049 

Sweden, Uppsala 1722 2012 291 19 3334 

Switzerland, Basel 1755 2009 255 6 3014 

Switzerland, Geneva 1753 2009 257 1 3077 

UK, Aberdeen 1881 2012 132 1 1582 

UK, Belfast 1881 2012 132 1 1576 

UK, Cambridge 1871 2012 142 1 1702 

UK, Durham 1847 2012 166 2 1989 

UK, Edinbourg 1785 1993 209 1 2507 

UK, London 1841 2004 164 6 1944 

UK, Plymouth 1865 1993 129 1 1543 

USA, Atlanta 1881 2012 132 1 1582 

USA, Bismarck 1881 2012 132 1 1582 

USA, Boise 1881 2012 132 1 1583 

USA, Boston 1881 2012 132 1 1583 

USA, Chattanooga 1881 2012 132 1 1583 

USA, Cincinatti 1881 2012 132 1 1581 

USA, Columbus 1881 2012 132 1 1583 

USA, Concord 1881 2012 132 1 1583 

USA, Des Moines 1881 2012 132 1 1583 

USA, Detroit 1881 2012 132 1 1583 

USA, Dodge City 1881 2012 132 1 1582 

USA, Fargo 1881 2012 132 1 1583 

USA, Galveston 1881 2012 132 1 1574 

USA, Indianapolis 1881 2012 132 1 1583 

USA, Jacksonville 1881 2012 132 1 1581 

USA, Knoxville 1881 2012 132 1 1582 

USA, Las Vegas 1875 1993 119 0 1428 

USA, Madison 1881 2012 132 1 1583 

USA, Marquette 1881 2012 132 3 1552 

USA, Milwaukee 1881 2012 132 1 1583 

USA, Mobile 1881 2012 132 1 1583 

USA, Nashville 1881 2012 132 1 1582 

USA, New Orleans 1874 2005 132 1 1580 

USA, New York 1822 2007 186 1 2225 
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Appendix D 
Estimation and test results 
 

Table D1. Estimation results using the characteristic function regression and the Whittle   

                  method. Monthly data 

  Weather station 
Cm  

Cs    
CH  

WH    SD 
WH  

Argentina, Buenos Aires 16,7780 0,9941 0,7852 0,7127 0,0156 

Australia, Adelaide 16,7314 0,8357 0,6959 0,6624 0,0165 

Australia, Alice Springs 20,7752 1,1207 0,7002 0,6834 0,0166 

Australia, Cap Otway 13,8558 0,6599 0,8031 0,7437 0,0159 

Austria, Kremsmunster 8,6352 1,2509 0,6546 0,6506 0,0163 

Austria, Vienna 9,9474 1,3873 0,6839 0,6593 0,0152 

Belgium, Uccle 9,9700 1,2939 0,6601 0,6430 0,0141 

Canada, Winnipeg 1,8403 1,9953 0,6543 0,6599 0,0164 

Croatia, Zagreb 11,5150 1,3627 0,6539 0,6505 0,0155 

Czech Republic, Prague 9,5800 1,4748 0,6837 0,6702 0,0124 

Denmark, Copenhagen 8,0305 1,2246 0,7545 0,7582 0,0131 

Denmark, Vestervig 7,8403 1,1152 0,7246 0,7635 0,0164 

Egypt, Alexandria 19,9002 0,5478 0,7734 0,7981 0,0179 

France, Nantes 11,6940 1,1150 0,6432 0,6433 0,0149 

France, Paris 11,0153 1,4220 0,7326 0,6722 0,0119 

Germany, Berlin 9,1581 1,4658 0,6642 0,6618 0,0117 

Germany, Hohenpeissenberg 6,3958 1,4604 0,6173 0,6049 0,0122 

Germany, Karlsruhe 10,1956 1,2995 0,6421 0,6293 0,0163 

Greece, Athens 17,9217 0,8921 0,6824 0,6982 0,0154 

Greenland, Illulisat -4,7514 2,2368 0,7384 0,7250 0,0161 

Greenland, Ivittuut 0,6765 1,4497 0,7821 0,7513 0,0204 

Hungary, Budapest 10,2157 1,3317 0,6270 0,6450 0,0124 

Iceland, Djupivogur 3,6904 1,0356 0,7620 0,7364 0,0163 

Iceland, Reykjavik 4,3958 1,0192 0,7312 0,7109 0,0159 

India, Agra 25,8429 0,8419 0,7313 0,7525 0,0186 

India, Allahabad 26,0945 0,7720 0,6993 0,6943 0,0168 

India, Bombay 27,3723 0,4721 0,7828 0,7882 0,0168 

India, Indore 24,7188 0,7275 0,7343 0,7087 0,0166 

India, Madras 28,5635 0,4788 0,7512 0,7527 0,0167 

India, Nagpur 26,9237 0,7010 0,6965 0,7084 0,0166 

Israel, Jerusalem 17,2282 0,9798 0,6846 0,6992 0,0161 

Italy, Bologna 13,8586 1,1764 0,7020 0,6975 0,0136 

Italy, Milan 13,2584 1,1841 0,7240 0,7091 0,0121 

Japan, Hiroshima 15,9150 0,7445 0,7311 0,7326 0,0171 

Japan, Nagasaki 16,7045 0,7607 0,7377 0,7150 0,0166 

Japan, Tokyo 15,6309 0,8553 0,7949 0,7444 0,0163 

Kazakhstan, Kazalinsk 8,2037 1,7548 0,6094 0,6555 0,0180 

Luxembourg, Luxembourg 8,4252 1,4020 0,6752 0,6582 0,0144 

New Zealand, Wellington 12,7180 0,6044 0,7738 0,7518 0,0171 

Norway, Andoya 3,7513 1,0612 0,7232 0,7253 0,0158 

Norway, Bergen 7,5230 1,0889 0,6781 0,6869 0,0152 

Norway, Bodo 4,5494 1,2171 0,6803 0,6978 0,0157 

Norway, Dombas 1,4775 1,5986 0,6327 0,6636 0,0155 
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Norway, Karasjok -1,9908 1,9842 0,6547 0,6794 0,0161 

Norway, Mandal 7,1076 1,1017 0,6815 0,7236 0,0157 

Norway, Oksoy Lighthouse 7,5188 1,0430 0,7194 0,7715 0,0160 

Norway, Ona 7,0728 0,8664 0,7112 0,7491 0,0160 

Norway, Oslo 5,7741 1,3513 0,6933 0,7244 0,0136 

Norway, Roros 0,2107 1,6435 0,6669 0,6951 0,0159 

Norway, Tromso 2,6923 1,1472 0,6698 0,6905 0,0157 

Norway, Utsira 7,4181 0,8563 0,7350 0,7679 0,0159 

Norway, Vardo 1,2493 1,1079 0,7647 0,7512 0,0156 

Pakistan, Lahore 24,5265 0,8160 0,6494 0,6929 0,0162 

Portugal, Lisbon 16,3263 0,9416 0,7686 0,7105 0,0168 

Romania, Sulina 11,2567 1,1088 0,6529 0,6995 0,0168 

Russia, Archangelsk 0,2841 2,0211 0,6752 0,6611 0,0164 

Russia, Sort 14,0588 0,9248 0,6395 0,6935 0,0182 

Russia, St Petersburg 4,7851 1,7212 0,6966 0,6956 0,0167 

Spain, Gibraltar 17,5787 0,6538 0,7734 0,7651 0,0154 

Sweden, Bromma 5,8660 1,3941 0,6937 0,7359 0,0119 

Sweden, Stockholm 5,6898 1,3573 0,6814 0,7213 0,0121 

Sweden, Tullinge 5,7832 1,3610 0,6717 0,7272 0,0120 

Sweden, Uppsala 5,4100 1,4928 0,6904 0,7179 0,0114 

Switzerland, Basel 9,5601 1,2786 0,6247 0,6223 0,0118 

Switzerland, Geneva 10,0229 1,2647 0,6933 0,6675 0,0118 

UK, Aberdeen 8,1199 0,8246 0,6905 0,7035 0,0165 

UK, Belfast 9,1002 0,7924 0,6496 0,6651 0,0164 

UK, Cambridge 9,8094 1,0442 0,6782 0,6726 0,0158 

UK, Durham 8,4830 0,9478 0,6980 0,6856 0,0147 

UK Edinbourg 8,4451 0,8442 0,6438 0,6696 0,0130 

UK, London 10,2138 1,1508 0,7214 0,6855 0,0149 

UK, Plymouth 10,7246 0,7619 0,6243 0,6763 0,0166 

USA, Atlanta 17,2729 0,9995 0,6321 0,6408 0,0163 

USA, Bismarck 5,5504 2,0060 0,6549 0,6403 0,0163 

USA, Boise 10,6934 1,3891 0,6544 0,6563 0,0164 

USA, Boston 10,5947 1,1244 0,6934 0,6703 0,0164 

USA, Chattanooga 16,2654 1,0871 0,6371 0,6474 0,0163 

USA, Cincinatti 12,1536 1,3755 0,6555 0,6448 0,0163 

USA, Columbus 11,2329 1,2730 0,6292 0,6306 0,0163 

USA, Concord 7,2351 1,2042 0,6871 0,6622 0,0164 

USA, Des Moines 9,9495 1,4644 0,6256 0,6320 0,0163 

USA, Detroit 9,5838 1,2895 0,6586 0,6533 0,0164 

USA, Dodge City 12,8572 1,3826 0,6263 0,6112 0,0162 

USA, Fargo 4,8049 1,8093 0,6559 0,6551 0,0164 

USA, Galveston 21,4536 0,8351 0,6621 0,6881 0,0165 

USA, Indianapolis 11,5220 1,2831 0,6109 0,6220 0,0162 

USA, Jacksonville 20,0567 0,9156 0,6078 0,6509 0,0164 

USA, Knoxville 14,9453 1,1045 0,6245 0,6296 0,0163 

USA, Las Vegas 11,1652 1,2232 0,6429 0,6468 0,0172 

USA, Madison 7,8499 1,5128 0,6414 0,6475 0,0163 

USA, Marquette 3,7917 1,5050 0,6884 0,6860 0,0166 

USA, Milwaukee 8,6872 1,4763 0,6894 0,6758 0,0164 

USA, Mobile 19,3524 0,8849 0,6170 0,6509 0,0164 

USA, Nashville 15,4640 1,1072 0,5814 0,6030 0,0162 

USA, New Orleans 20,6607 0,9546 0,6961 0,6955 0,0165 

USA, New York 11,9288 1,2643 0,7451 0,6985 0,0139 
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Table D2. Estimates based on annual data  
 

Weather station WH  SE 
WH  

   

Argentina, Buenos Aires 0,938 0,055 

Australia, Adelaide 0,781 0,058 

Australia, Alice Springs 0,708 0,058 

Australia, Cap Otway 0,869 0,059 

Austria, Kremsmunster 0,782 0,058 

Austria, Vienna 0,806 0,055 

Belgium, Uccle 0,739 0,050 

Canada, Winnipeg 0,728 0,058 

Croatia, Zagreb 0,780 0,055 

Czech Republic, Prague 0,716 0,043 

Denmark, Copenhagen 0,753 0,045 

Denmark, Vestervig 0,733 0,056 

Egypt, Alexandria 0,862 0,064 

France, Nantes 0,720 0,052 

France, Paris 0,802 0,042 

Germany, Berlin 0,712 0,041 

Germany, Hohenpeissenberg 0,684 0,043 

Germany, Karlsruhe 0,819 0,059 

Greece, Athens 0,788 0,054 

Greenland, Illulisat 0,805 0,057 

Greenland, Ivittuut 0,812 0,072 

Hungary, Budapest 0,663 0,043 

Iceland, Djupivogur 0,841 0,058 

Iceland, Reykjavik 0,885 0,057 

India, Agra 0,844 0,066 

India, Allahabad 0,807 0,059 

India, Bombay 0,887 0,059 

India, Indore 0,899 0,059 

India, Madras 0,906 0,059 

India, Nagpur 0,727 0,058 

Israel, Jerusalem 0,654 0,057 

Italy, Bologna 0,845 0,048 

Italy, Milan 0,826 0,043 

Japan, Hiroshima 0,738 0,059 

Japan, Nagasaki 0,761 0,058 

Japan, Tokyo 0,851 0,058 

Kazakhstan, Kazalinsk 0,563 0,061 

Luxembourg, Luxembourg 0,825 0,051 

New Zealand, Wellington 0,919 0,060 

Norway, Andoya 0,761 0,055 

Norway, Bergen 0,717 0,053 

Norway, Bodo 0,682 0,054 

Norway, Dombas 0,632 0,054 

Norway, Karasjok 0,656 0,056 

Norway, Mandal 0,625 0,054 

Norway, Oksoy Lighthouse 0,672 0,055 
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Norway, Ona 0,702 0,056 

Norway, Oslo 0,699 0,047 

Norway, Roros 0,699 0,056 

Norway, Tromso 0,641 0,054 

Norway, Utsira 0,753 0,055 

Norway, Vardo 0,770 0,054 

Pakistan, Lahore 0,743 0,057 

Portugal, Lisbon 0,931 0,060 

Romania, Sulina 0,631 0,057 

Russia, Archangelsk 0,747 0,058 

Russia, Sort 0,581 0,062 

Russia, St Petersburg 0,706 0,058 

Spain, Gibraltar 0,855 0,056 

Sweden, Bromma 0,690 0,041 

Sweden, Stockholm 0,632 0,041 

Sweden, Tullinge 0,622 0,041 

Sweden, Uppsala 0,710 0,040 

Switzerland, Basel 0,720 0,042 

Switzerland, Geneva 0,818 0,042 

UK, Aberdeen 0,767 0,058 

UK, Belfast 0,727 0,058 

UK, Cambridge 0,781 0,056 

UK, Durham 0,761 0,052 

UK, Edinbourg 0,626 0,045 

UK, London 0,809 0,053 

UK, Plymouth 0,671 0,058 

USA, Atlanta 0,725 0,058 

USA, Bismarck 0,761 0,058 

USA, Boise 0,698 0,057 

USA, Boston 0,724 0,058 

USA, Chattanooga 0,695 0,057 

USA, Cincinatti 0,718 0,058 

USA, Columbus 0,702 0,057 

USA, Concord 0,729 0,058 

USA, Des Moines 0,623 0,056 

USA, Detroit 0,663 0,057 

USA, Dodge City 0,715 0,058 

USA, Fargo 0,725 0,058 

USA, Galveston 0,666 0,057 

USA, Indianapolis 0,658 0,057 

USA, Jacksonville 0,618 0,056 

USA, Knoxville 0,680 0,057 

USA, Las Vegas 0,694 0,060 

USA, Madison 0,682 0,057 

USA, Marquette 0,716 0,058 

USA, Milwaukee 0,755 0,058 

USA, Mobile 0,672 0,057 

USA, Nashville 0,625 0,057 

USA, New Orleans 0,812 0,058 

USA, New York 0,843 0,049 
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Figure D1. Graphical tests of the distribution of the Chi-square statistics Q when    

                   estimated H is inserted.  
                     Bootstrap estimates based on 1000 simulated FGN series of length 2000 
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Figure D2. Graphical tests of asymptotic normality of the charact eristic function                                

        regression estimator 

                    Bootstrap estimates based on 1000 simulated FGN series of length 1000 

  
  

                     Figure D3. Graphical tests of self-similarity and normality  
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